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Managing your Private and Public Data: Bringing
down Inference Attacks against your Privacy

Salman Salamatian∗, Amy Zhang†, Flavio du Pin Calmon∗, Sandilya Bhamidipati‡,
Nadia Fawaz‡, Branislav Kveton§, Pedro Oliveira¶, Nina Taft‖

Abstract—We propose a practical methodology to protect a
user’s private data, when he wishes to publicly release data
that is correlated with his private data, to get some utility.
Our approach relies on a general statistical inference framework
that captures the privacy threat under inference attacks, given
utility constraints. Under this framework, data is distorted before
it is released, according to a probabilistic privacy mapping.
This mapping is obtained by solving a convex optimization
problem, which minimizes information leakage under a distortion
constraint. We address practical challenges encountered when
applying this theoretical framework to real world data. On
one hand, the design of optimal privacy mappings requires
knowledge of the prior distribution linking private data and data
to be released, which is often unavailable in practice. On the
other hand, the optimization may become untractable when data
assumes values in large size alphabets, or is high dimensional.
Our work makes three major contributions. First, we provide
bounds on the impact of a mismatched prior on the privacy-utility
tradeoff. Second, we show how to reduce the optimization size
by introducing a quantization step, and how to generate privacy
mappings under quantization. Third, we evaluate our method on
two datasets, including a new dataset that we collected, showing
correlations between political convictions and TV viewing habits.
We demonstrate that good privacy properties can be achieved
with limited distortion so as not to undermine the original
purpose of the publicly released data, e.g. recommendations.

I. INTRODUCTION

One of the central problems of managing privacy in the
Internet is that of managing both users’ public and private data
simultaneously. Many users are willing to release some data
about themselves to a service provider, such as their movie
watching history [2]; they do so because such data enable
useful services and is often not considered sensitive or private.
However users also have other data they consider private, such
as income level, political affiliation, or medical conditions.
These private attributes can often be inferred from the data
the user considers public, by using inference algorithms that
have been trained using machine learning techniques. We use
the term inference attack to refer to the use of an inference
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algorithm that infers something about a user they may consider
private (called a private attribute) from their public data.
These threats can be seen as hidden threats to users’ privacy
since most users are unaware of the correlations between their
private and public data, and of the ability of machine learning
techniques to learn these correlations and exploit them in
inference algorithms. For example, most users may not realize
that their political views can be inferred from their movie
watching history [1], [3]. Indeed, the research community has
illustrated numerous scenarios in which personal information
can be inferred from the data trails people create. In addition
to political views, inference has been used to learn age [4],
sexual orientation [5], gender [1], [4] and drug use [5]. The
emergence of the Internet of Things (IoT) has generated much
fascination along with much concern over rapidly expanding
privacy risks, including those related to the inference of users’
personal behavior in great detail from data collected by IoT
devices over time [6]. This personal information is used
rampantly in online services for the purposes of personalized
recommendations, and targeted ads. However, when users
consider a particular characteristic private, they may wish to
prevent inference algorithms from inferring such attributes.

In this work, we focus on a method which allows a user
to release her public data, while preventing against inference
attacks that may infer her private data from the public informa-
tion. Our solution relies on a privacy mapping, which informs
a user on how to distort her public data, before releasing it,
such that no inference attack can successfully infer her private
attribute. We aim to provide protection against any inference
algorithm that may be used by an attacker. At the same time,
the distortion should be bounded so that the personalization
service such as a recommendation, provided based on the
distorted data, continues to be relevant to the user.

In this paper we adopt the privacy framework presented
in [7]. This general framework considers the privacy threat
incurred by a user when an adversary attempts to infer the
user’s private information from the user’s public (released)
data. The privacy leakage is measured in terms of an inference
cost gain that the adversary has by observing the released data.
The goal of the framework is to inform a user on how to
randomly distort their data before releasing it. We call this a
privacy mapping from the original user data to the distorted
data. The framework finds this mapping while confining the
amount of distortion according to utility constraints that ensure
the data remains useful for the personalized service. The
authors in [7] formulate the problem of determining this
mapping for a general inference cost function as a convex
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program. Without significant loss of generality, [7] argues
that the privacy loss can be measured in terms of mutual
information, which leads to an optimization similar to the one
found in rate-distortion theory. This formulation, albeit general
and theoretically sound, faces a number of practical challenges
when applied to actual data available within web services,
in particular data that assumes value from large alphabets.
The first challenge is that this method relies on knowing a
joint distribution between the private and public data, called
the prior. Often the true prior distribution is not available
and instead only a limited set of samples of the private and
public data can be observed. This leads to the mismatched
prior problem. We seek to provide a meaningful distortion and
bring privacy even in the face of a mismatched prior. Our first
contribution centers around this. Starting with the set of ob-
servable data samples, we find an estimate of the prior, based
on which the privacy mapping is derived. We develop bounds
on the impact on the privacy-utility tradeoff of the mismatched
prior. More precisely, we show that the private information
leakage increases log-linearly with the L1-distance between
our estimate and the prior; that the distortion rate increases
linearly with the L1-distance between our estimate and the
prior; and that the L1-distance between our estimate and the
prior decreases as the sample size increases.

The second challenge, that occurs when the size of the
underlying alphabet of the user data is very large, e.g. due
to a large number of features representing the data, is that of
an intractable optimization. We introduce a quantization pre-
processing step that limits the dimensionality of the problem,
and also reduces the impact of the mismatch. More precisely,
we first quantize the original data. We then determine how
to distort the data in the space defined by the quantization
representative points. The privacy mapping is computed on
the representative points, using a convex solver that minimizes
privacy leakage subject to a distortion constraint. The advan-
tage of our quantization scheme is that it is computationally
efficient - we reduce the number of optimized variables from
being quadratic in the size of the underlying alphabet to
being quadratic in the number of representative points, and
thus make the optimization independent from the number of
observable data samples. For some real world examples, this
can lead to orders of magnitude reduction in the optimization
size. We also show that any additional distortion introduced
by quantization increases linearly with the maximum distance
between a sample datapoint and the closest representative
point. This quantization step, our second contribution, provides
a fundamental extension to the original method [7] which
cannot easily be applied in practice when the data is too high
dimensional. The problem of the optimization size was also
studied in [8], where the authors were interested in scaling up
the optimization in [7] using linear programming techniques.
Our method is complimentary to theirs and can be used
regardless of the optimization algorithm used.

Our third area of contribution centers around evaluations.
In [7] the authors only proposed and reasoned about their
framework but did not evaluate it. Here, we evaluate our
methods on two datasets, one well-known dataset used by
the machine learning community, and one new dataset that

we collected ourselves. This latter dataset is one that contains
users TV show ratings and their political affiliation. The exis-
tence of correlations between political affiliation and opinions
about TV has been shown in [9]. In our study, we consider
users opinions about TV shows as the public be data to be
released, and a user’s political affiliation as information to
be kept private. In our solution for producing a mapping, we
consider different types of distortions: in some cases we use
erasure-distortions in which an element of a user’s public data
is removed, while in other cases we use exchange-distortions
in which specific elements in a public profile are altered.

Our evaluations demonstrate multiple things. First, even
when we do not have a fully specified prior distribution
on the public and private data, we show that we can still
provide privacy in this difficult environment at the extra cost
of a small amount of additional distortion in the public data.
Second, we illustrate that our quantization approach works
well, namely that it is possible to provide good privacy even
when quantization is needed to reduce the dimensionality of
the data. Third, we show that in our Politics-and-TV dataset,
perfect privacy can be achieved with a 15% distortion of
the original public data. In practice less than 15% distortion
could provide sufficient privacy. We also illustrate examples of
specific distortions (changes to particular public data profiles)
and show these are intuitively reasonable, yet not trivial.

This paper differs from our prior work as follows. In [7], no
evaluations were carried out, nor did it address the problems
in applying this theoretical framework to real world datasets
(i.e. incomplete prior data, and high dimensionality), both
of which we do here. In our short paper [1], we presented
the idea of quantization, but only evaluated it on a limited
dataset. In this current paper, we blend quantization with
the mismatched prior and carry out broader evaluations that
include additional datasets, as well as illustrating how reducing
mutual information reduces the success rate of the attacker. We
also include all related mathematical proofs herein.

The paper is organized as follows. In Section II, we review
related works and explain differences with previous works. In
Section III, we formally define the problem. In Section IV,
we provide bounds on the impact of a mismatched prior on
the privacy-distortion tradeoff. In Section V, we propose a
quantization step to reduce the optimization size. Our datasets
are described in Section VI, the results of our evaluations are
provided in Section VII, and we conclude in Section VIII.

II. RELATED WORK

A. Privacy

The prevalent notion of privacy in the research community
is differential privacy [10], [11]. Traditionally, differential pri-
vacy considers a centralized statistical database privacy setting,
in which a database contains private data from multiple users,
and an untrusted analyst asks a query (aggregate function or
population quantity) over the entries of the database. An ε-
differentially private mechanism produces a randomized an-
swer to the query, such that the distribution of the randomized
answer to the query does not vary more than a factor eε if
one entry of the database varies. This guarantees that it is
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difficult to distinguish “neighboring” databases based solely
on the observation of the output. The centralized statistical
database setting traditionally considered by differential privacy
differs from the privacy setting considered in this paper as
follows. First, we consider a local privacy setting focused
on an individual privacy-conscious user, in which the entity
collecting data from the user– the service provider– is not
trusted. The user data is not aggregated in a database before
it is randomized, but it stays locally at the user where it
will be randomized according to a privacy mapping. Local
privacy dates back to randomized response in surveys [12].
Second, in our setting, privacy is ensured at the individual
user level. More precisely, the quantity that is randomized
prior to the release to the service provider is not an aggregate
quantity over multiple users. It is an individual quantity of
an individual privacy-conscious user, such as the user’s very
own movie ratings. The private quantity that is protected is
another piece of individual data of this privacy conscious
user, for example his political views. Neither the ratings nor
political views are aggregate quantities over multiple users,
or answers to queries over multiple user data. Third, in
our setting, recommendations are provided to the privacy-
conscious user based on his randomized rating vector, using
a recommendation engine that has been a priori trained by
the service provider based on original data from non-privacy
conscious users. This is in contrast to [13], which considers
the problem of training a privacy-preserving recommendation
engine whose modeling parameters satisfy differential privacy
with respect to the data entries of privacy-conscious users on
which the engine is trained.

Differential privacy does not take into account the distribu-
tion of the entries of the database, which makes the formu-
lation mathematically tractable and simplifies the implemen-
tation of differentially private systems. Moreover, differential
privacy is robust against arbitrary side information from the
attacker (also called background knowledge or auxiliary infor-
mation), which is a property that our scheme cannot guarantee
as such, even though our recent works promises great progress
on defining the privacy-utility trade-off under side information.
However, differential privacy does not quantify the amount
of information that is leaked from the system. Furthermore,
when inputs are correlated, guaranteeing differential privacy
does not necessarily guarantee a bounded information leakage.
As shown in [7], for certain input distributions, an adversary
might able to infer with arbitrarily high precision the entries
of the input database from a differentially private answer to a
query on this database.

Other general and flexible frameworks similar to differential
privacy exist such as the Pufferfish framework [14]. In this
framework, a pair of mutually exclusive statements are output,
such that the adversary does not know which, if either of
the two statements is true. This framework does not take
try to minimize distortion of the data, and ignores utility
preservation. In our paper, we focus on the privacy-utility
trade-off. We also assume that the adversary has knowledge
of the data generation process, and knows the same prior
distribution as the system which designs the privacy mapping.
The Pufferfish framework can accommodate any assumption

about the adversary’s knowledge of the prior distribution, but
also requires that the system designing the privacy mapping
knows what the adversary’s belief on the prior distribution is,
which is not knowledge we can assume.

Another existing trend in the privacy research community
is to apply information-theoretic tools to quantify and design
privacy-preserving mechanisms [7], [15]–[19]. Information
theory provides a natural framework to measure the amount of
private information that an adversary can learn by observing a
given user’s public data. This was first noted by Reed [16], and
has since appeared in different forms in the information theory
and privacy literature. One line of work, adopted in [17], [18],
provides asymptotic and fundamental limits for an adversary’s
average equivocation of the private data as the number of
data samples grows arbitrarily large and characterize rate-
distortion-equivocation regions.

Non-asymptotic approaches to information-theoretic privacy
were discussed, for example, in [7], [15], [19]. In [15],
information-theoretic metrics were directly applied to design
privacy mechanisms without considering distortion constraints.
Afterwards, [19] presented a formulation for designing privacy
mechanisms similar to the ones found in rate-distortion theory.
More recently, [7] introduced a general framework for privacy
against statistical inference that takes into account distortion
constraints for the user’s public data. This framework was first
applied to real data in [1], where the quantization method was
also proposed. Built on these ideas, a system implementing
privacy mappings for TV shows was presented in [20]. Simi-
larities and differences between this privacy-utility framework
and the information bottleneck method were studied in [21],
and a sparse optimization algorithm to solve efficiently the
privacy problem was proposed in [8].

Information-theoretic approaches have also been used to
quantify the information flow in security systems (e.g. [22]
and the references therein). In this case, different information-
theoretic metrics are used to quantify the change of an
attackers belief on the input of a system given an observation
of the output. These approaches, such as the one used in
[22], also take into account possible prior mismatches and
extra knowledge that an attacker might have. Even though
in this paper we also use information-theoretic metrics to
quantify the change in the attacker’s belief, our results are
fundamentally different in what they seek to accomplish. Our
main goal is not to simply quantify the adversarial threat, but
create a practical framework that allows the design of privacy-
preserving mechanisms that also maintain a certain level of
utility of the data. Therefore, we simultaneously consider the
utility of the data and the variation of the adversary’s belief,
instead of focusing solely on the information flow.

Our focus on inference attacks that occur in recommenda-
tions, differs from other privacy problems with recommen-
dation systems. For example, in [2], the focus is on de-
anonymization of user records through linkage attacks: by
linking records in two databases, the authors recover the
identity of some users in an anonymized database. Linkage
attacks are a different kind of threat that we do not address in
this paper, and thus our work is orthogonal to this one. Our
focus is on preventing inference attacks on private attributes
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of an individual user, rather than on recovering the identity of
a user from anonymized records through linkage attacks. K-
anonymity was introduced by [23] and was intended to hide
the identity of a user by making his record indistinguishable
from the records of K−1 other users. Our setting is different
because we are attempting to prevent private attributes of a
user from being inferred, while simultaneously allowing the
user to disclose some other data.

B. Quantization

Data quantization [24] are methods that reduce the size of
datasets. In summary, all of these methods select k represen-
tative examples from the set of n examples, where k � n.
The difference between the methods is in their objectives.
One of the most popular methods is k-means clustering, which
minimizes the mean squared error between the examples and
their closest representative example [24]. Another popular
metric is to minimize is the maximum distance between the
example and its closest representative example. Online k-
center clustering [25] and cover trees [26] find nearly optimal
solutions to this problem.

III. PROBLEM STATEMENT AND BACKGROUND

Notations: We denote by Simplex the probability simplex
defined by

∑
x p(x) = 1, p(x) ≥ 0 ∀x. Let A ∈ A and

B ∈ B be random vectors taking values in the finite alphabets
A and B respectively. The joint probability distribution of the
elements of A and B is denoted pA,B : A × B → [0, 1].
The marginal distribution of vector A is defined by pA(a) =∑
b∈B pA,B(a, b) ∀a ∈ A, while the conditional distribution

of A given B is given by pA|B(a|b) =
pA,B(a,b)
pB(b) .

The entropy H(A) = −
∑
a∈A pA(a) log(pA(a)) of

a random vector A depends only on the distribu-
tion pA, while the mutual information I(A;B) =∑
a∈A,b∈B pA,B(a, b) log

(
pA,B(a,b)
pA(a)pB(b)

)
of vectors A and B

depends only on the joint distribution pA,B , since the
marginals pA and pB can be obtained from pA,B .

In this section, we define the threat model, and describe the
privacy-accuracy framework we consider. Then, we point out
two challenges encountered when applying this framework in
practice, and outline our approaches to address them. These
approaches are treated in more details in Sections IV and V.

A. Threat Model

Setting: We consider the setting described in [7], where a
user has two types of data: some data that he would like to
remain private, e.g. his income level, his political views, etc.,
and some data that he is willing to release publicly and from
which he will derive some utility, for example the release of
his media preferences to a service provider would allow the
user to receive content recommendations.

We denote by A ∈ A the vector of personal attributes that
the user wants to keep private, and by B ∈ B the vector
of data he is willing to make public. We assume that the
user private attributes A are linked to his data B by the joint
probability distribution pA,B . Thus, an adversary who would

observe B could infer some information about A from B.
To reduce this inference threat, instead of releasing B, the
user will release a distorted version of B, denoted B̂ ∈ B̂,
generated according to a conditional probabilistic mapping
pB̂|B , called the privacy mapping. Note that the set B̂ may
differ from the set B. It should be pointed out that both the
prior distribution pA,B and the privacy mapping pB̂|B are
assumed to be known to the adversary. Privacy Threat: To
formalize the privacy threat model, we assume the standard
statistical inference threat model in [7]. The attack considered
is that of statistical inference of the private attribute A from
the observation B. The inference attack, defined below, is
statistical because it makes use of the prior distribution pA,B
to infer private attribute A from the observation B.

Definition 1 (Inference attack). An inference attack on A ∈ A
given the observation B = b ∈ B takes as input the
distribution pA,B , and the observation B = b, and outputs
a probability distribution q∗ : A → [0, 1] from the set
P(A) of distributions with support A, as the solution to the
minimization

q∗ = arg min
q
EA|B [C(A, q)|B = b], (1)

for some cost function C(A, q).

In other words, the inference attack takes as inputs the
observed B = b, and outputs a belief distribution qA on A
given this observation by minimizing its inference cost. Note
that this definition is more general than the one where the in-
ference attacks only outputs an estimate Â. The minimization
of an expected cost in (1) is a standard approach in statistical
inference [27, Chapter 8].

We now define the privacy leakage as follows. Prior to
observing B̂, the adversary would choose a distribution q on
A as the solution of the minimization

c∗0 = min
q
EA[C(A, q)].

After observing B̂, the adversary would update his belief q
such that it minimizes

c∗
b̂

= min
q
EA|B̂ [C(A, q)|B̂ = b̂].

The average cost gain by the adversary after observing B̂ is
the difference

∆C = c∗0 − EB̂ [c∗
b̂
].

Definition 2 (Privacy leakage). The privacy leakage on A ∈ A
from the observation of B ∈ B is given by ∆C.

The privacy leakage quantifies how much an adversary gains
in term of inference of the private attributes A thanks to the
observation of B̂. The goal of the privacy mapping will be to
minimize this gain. In the particular case of perfect privacy
∆C = 0, the released data B̂ does not provide any information
that is helpful for the inference of A, and the inference cannot
outperform an uninformed guess. This general framework does
not assume a particular inference algorithm.
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If an adversary uses the log-loss1 cost function C(A, q) =
− log(qA), it can easily be shown [7] that

∆C = I(A; B̂). (2)

Hence, the privacy leakage is captured by the mutual informa-
tion between the private attributes A and the publicly released
data B̂. It should be noted that in the case of perfect privacy
(I(A; B̂) = 0), the privacy mapping pB̂|B renders the released
data B̂ statistically independent from the private data A.

A natural question is how the privacy leakage modeled by
the mutual information I(A; B̂) can be related to the probabil-
ity of success of an inference algorithm used by the adversary.
In [28], using Fano’s Inequality [29, Theorem 2.11.1], the
probability of error P(Ã 6= A) of any inference algorithm
that infers Ã based on the observation B̂ is lower-bounded by

P(Ã 6= A) ≥ H(A)− I(A; B̂)− 1

log |A|
(3)

From (3), it is clear that making I(A; B̂) small enough, more
precisely in the order of I(A; B̂) < εH(A), increases the
bound on the probability of error. Also note that this bound
is maximized for H(A)−1

log(A) , and cannot be made arbitrarily
large. Indeed, even if B̂ and A are statistically independent
(I(A; B̂) = 0), an adversary can use its knowledge of pA
to make an uniformed guess on the value of A: by inferring
Ã = arg maxa∈A pA(a) as the most probable value in A, he
will be correct with probability pA(a).

It should be mentioned that, although we model the pri-
vacy threat using the average cost gain ∆C in this paper,
Calmon and Fawaz [7] also proposed a worst-case model
∆C∗ = c∗0−minb̂∈B c

∗
b̂
, where the privacy threat is measured

in terms of the most informative output, i.e. the output that
gives the largest gain in cost. We would like to point out
that in the case of perfect privacy under the log-loss, the
average threat model ∆C = 0 and the worst-case threat model
∆C∗ = 0 are equivalent. Thus conclusions drawn on distortion
to achieve perfect privacy under the average threat model also
hold for the worst-case model. In general, the worst-case threat
is an upperbound on the average threat, and its analysis and
application are the object of some of our ongoing work.
Distortion Constraint: The privacy mapping pB̂|B should be
designed in such a way that it renders any statistical inference
of A based on the observation of B̂ harder, yet, at the same
time, preserves some utility to the released data B̂, by limiting
the distortion generated by the mapping. This can be modeled
by a constraint ∆ ≥ 0 on the average distortion:

EB,B̂ [d(B, B̂)] ≤ ∆, (4)

for some distortion function d : B × B̂ → R+. Any distortion
function can be used, such as the Hamming distance if
B and B̂ are binary vectors, or the l2-norm if B and B̂
are real vectors, or even more complex functions, possibly
non-symmetric, modeling the variation in utility that a user
would derive from the release of B̂ instead of B. The latter

1For a justification of the relevance and generality of the log-loss cost, we
refer the reader to [7, Section IV.A] and to [21].

Algorithm 1 Privacy mapping design.

Input: prior pA,B
solve the problem for pB̂|B :

minimize
pB̂|B

J(pA,B , pB̂|B)

subject to EpB,B̂

[
d(B, B̂)

]
≤ ∆

pB̂|B ∈ Simplex

Output: mapping pB̂|B

could, for example, represent the difference in the quality of
content recommended to the user based on his distorted media
preferences B̂ instead of his true preferences B.

B. Privacy-Accuracy Framework

In this section, we describe how the privacy mapping is
designed to address the inference privacy threat, under a
constraint on the distortion.

The mutual information I(A; B̂) is a function of the joint
distribution pA,B̂ , which in turn depends on both the prior
distribution pA,B and the privacy mapping pB̂|B . Indeed, A→
B → B̂ form a Markov chain, thus

pA,B̂(a, b̂) =
∑
b∈B

pB̂|B(b̂|b)pA,B(a, b),

pB̂(b̂) =
∑
b∈B

pB̂|B(b̂|b)pB(b), (5)

and using Eq. (5) in the definition of I(A; B̂), we can write

I(A; B̂) =
∑
a,b,b̂

pA,B(a, b)pB̂|B(b̂|b) log

∑
b” p(b̂|b”)p(b”|a)∑
a′,b′ p(b̂|b′)p(a′, b′)

.

(6)

To stress the dependency of the privacy leakage on the prior
distribution and the privacy mapping, we will denote

I(A; B̂) = J(pA,B , pB̂|B).

Similarly, the average distortion EB,B̂ [d(B, B̂)] is a function
of the joint distribution pB,B̂ , which in turn depends both
on the prior distribution pA,B , through the marginal pB , and
on the privacy mapping pB̂|B . Consequently, given a prior
distribution pA,B , the privacy mapping pB̂|B minimizing the
privacy leakage subject to a distortion constraint is obtained
as the solution to the optimization

minimize
pB̂|B

J(pA,B , pB̂|B)

subject to EB,B̂ [d(B, B̂)] ≤ ∆

pB̂|B ∈ Simplex,

(7)

which is summarized in Algorithm 1. It was shown in [7]
that this problem is convex, and can thus be efficiently solved
using standard algorithms. Note that this problem bears some
resemblance with a modified rate-distortion problem.

In the case of discrete data (numerical or categorical), the
privacy mapping is obtained as the solution of optimization (7)
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over probabilistic distributions, which has a finite number of
variables |B̂|×|B|. The case of continuous data, and the case of
mixed continuous data and discrete (categorical or numerical)
data, can be handled by solving the optimization over a class
of parametric distributions, whose parameters are optimized
in the design of the privacy mapping, or by discretizing the
alphabets. For instance, in [21], [28], the optimization is solved
for Gaussian priors and Gaussian mappings.

C. Practical Challenges

In this section, we describe two practical challenges encoun-
tered when applying the theoretical privacy-accuracy frame-
work described in Section III-B.

Consider the setting where data assumes values from a large
alphabet, then two practical challenges arise:

Mismatched prior: Finding the privacy mapping as the
solution to the convex optimization in Algorithm 1 relies on
the fundamental assumption that the prior distribution pA,B
that links private attributes A and data B is known and can
be fed as an input to the algorithm. In practice, the true prior
distribution may not be known, but may rather be estimated
from a set of sample data that can be observed, for example
from a set of users who do not have privacy concerns and
publicly release both their attributes A and their original
data B. The prior estimated based on this set of samples
from non-private users is then used to design the privacy-
preserving mechanism that will be applied to new users, who
are concerned about their privacy. If data assumes values from
a large alphabet, then obtaining an accurate estimate of the
prior distribution requires a large amount of samples, which
may not be available in practice. Thus, in practice, there
may exist a mismatch between the estimated prior and the
true prior, due for example to a small number of observable
samples, or to the incompleteness of the observable data.
In Section IV, we characterize the actual privacy-accuracy
tradeoff that results from first running Algorithm 1 with a
mismatched prior as input, and then using the so-obtained
privacy mapping, instead of the mapping that would have been
obtained under the knowledge of the true prior.

Large number of optimization variables: Designing the
privacy mapping pB̂|B requires characterizing the value of
pB̂|B(b̂|b) for all possible pairs (b, b̂) ∈ B × B̂, i.e. solving
the convex optimization problem over |B||B̂| variables. When
B̂ = B, and the size of the alphabet |B| is large, solving the
convex optimization over |B|2 variables may be intractable.

Now assuming that, although data takes values from a
large alphabet, it actually lies in a low dimensional space,
then leveraging the structural properties of the data can help
addressing both practical challenges mentioned above. Indeed,
by leveraging these structural properties, a quantization pre-
processing step reduces the size of the alphabet of the data,
which helps addressing the challenges as follows:
1) Mismatched prior: If quantization is used to map a point B
to a representative example C in a pre-processing step, then
the optimization for the design of the privacy takes as input the
prior distribution pA,C rather than the prior distribution pA,B.
The size of the alphabet of C is smaller than that of B. Thus,

obtaining an accurate estimate of the prior p(A,C) requires
less samples than estimating the prior p(A,B). Therefore, the
mismatch effect is attenuated.
2) Number of optimization variables: If the quantization pre-
processing step is used, the optimization for the design of
the privacy mapping is solved over the probabilistic mappings
pĈ|C over the representative points C, rather than over the
mappings pB̂|B . The number of optimization variables be-
comes quadratic in the number of representative points, rather
than quadratic in the size of the alphabet of B. This results
in a reduction in the number of variables since the size of the
alphabet of C is smaller than that of B.

In Section V, we introduce a pre-processing step based on
quantization. We show that this method does not affect the
privacy levels that can be achieved, but comes at the expense of
a limited amount of additional distortion, that we characterize.

IV. PRIVACY UNDER A MISMATCHED PRIOR

Suppose that we do not have perfect knowledge of the true
prior distribution pA,B but that we have its estimate qA,B . Let
the ‖pA,B − qA,B‖1 represent the mismatch between the true
prior pA,B and the estimate qA,B . Let p∗

B̂|B denote the optimal
privacy mapping obtained when pA,B is fed as an input to the
optimization (7), and let q∗

B̂|B denote the solution obtained
when feeding the mismatched distribution qA,B as an input
to the optimization (7). Then, if qA,B is a good estimate of
pA,B (low mismatch), then q∗

B̂|B should be close to p∗
B̂|B . In

particular, we distinguish between two desirable properties:
• Consistency: As the true prior is pA,B , the actual privacy

leakage when using privacy mappings q∗
B̂|B is given by

J(pA,B , q
∗
B̂|B), and not by the quantity J(qA,B , q

∗
B̂|B)

that is optimized when the estimate qA,B is fed as an
input to the optimization. By consistency, we mean that
the privacy mappings q∗

B̂|B obtained using the estimate
qA,B should have a good performance, both in terms of
actual privacy leakage and distortion, when used under
the true prior pA,B . Theorem 1 expresses the difference
in privacy leakage |J(pA,B , q

∗
B̂|B) − J(qA,B , q

∗
B̂|B)| in

terms of the mismatch ‖pA,B − qA,B‖1.
• Near-Optimality: For near-optimality, we wish that

the performance of the privacy mappings q∗
B̂|B be

close to that of the optimal mappings p∗
B̂|B . The-

orem 2 expresses the difference in privacy leakage
|J(qA,B , q

∗
B̂|B) − J(pA,B , p

∗
B̂|B)| in terms of the mis-

match ‖pA,B − qA,B‖1.

Theorem 1 (Consistency). Let q∗
B̂|B be a solution to the

optimization problem (7) with qA,B as input. Then:∣∣∣J(pA,B , q
∗
B̂|B)− J(qA,B , q

∗
B̂|B)

∣∣∣
≤ 3 ‖pA,B − qA,B‖1 log

|A| |B|
‖pA,B − qA,B‖1

EpB̂,B

[
d(B̂, B)

]
≤ ∆ + dmax ‖pA,B − qA,B‖1

where dmax = maxb̂,b d(b̂, b) is the maximum distance in the
feature space and EpB̂,B

is the expectation over pB̂,B(b̂, b) =
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∑
a pA,B(a, b)q∗

B̂|B(b̂|b).

Theorem 1 can be interpreted as a consistency result.
Indeed, the optimized privacy leakage J(qA,B , q

∗
B̂|B) and the

actual leakage J(pA,B , q
∗
B̂|B) are close if the priors are close.

Note, however, that there is no mention of the true optimal
leakage J(pA,B , p

∗
B̂|B). Theorem 2 bounds the difference

between the optimum with the true distribution J(pA,B , p
∗
B̂|B)

and the optimum with the estimate distribution J(qA,B , q
∗
B̂|B).

Theorem 2 (Near-optimality). Let q∗
B̂|B and p∗

B̂|B be the
solutions of the optimization problem (7) respectively with
qA,B and pA,B as inputs and distortion constraint ∆. Then,

|J(pA,B , p
∗
B̂|B)− J(qA,B , q

∗
B̂|B)|

≤ 7‖pA,B − qA,B‖1
dmax

dmin
log

|A||B|
‖pA,B − qA,B‖1

(8)

with dmax defined as in Thm. 1, and dmin the smallest non-zero
value of the distortion, i.e., dmin = minb,b̂,s.t.,d(b,b̂)>0 d(b, b̂).

Theorem 1 and Theorem 2 can be combined using the triangle
inequality to give a bound on the difference between the actual
leakage when having q∗

B̂|B ,i.e., J(pA,B , q
∗
B̂|B) and the optimal

leakage J(pA,B , p
∗
B̂|B). The proof of these theorems are

inspired by existing results in Information Theory regarding
uniform continuity of information theoretic measures such as
[30], [31], and methods for the proof of Theorem 2 can be
found in [32]. The results can be tighten by using a tighter
version of Lemma 1 in the appendix, as in [33, Problem 3.10],
but the order of the error stays the same.

This set of results allows us to construct mappings q∗
B̂|B

that have close to optimal performance, even though the
mapping is not perfectly known. The error grows in the
order of O(−‖pA,B − qA,B‖1 log ‖pA,B − qA,B‖1) with the
mismatch. Note that only this distance is necessary to compute
the bounds, and not the true prior itself. In Prop. 1 below, we
provide a bound on the probability of ‖pA,B − qA,B‖1 being
large, when qA,B is simply the empirical distribution obtained
from counting on n samples.

Proposition 1. Let qA,B = #{ai=a,bi=b}
n be the empirical

distribution of pA,B , where n is the total number of samples,
and #{ai = a, bi = b} is the number of examples where
A = a and B = b. Then,

P(‖qA,B − pA,B‖1 ≥ ε) ≤ (n+ 1)|A||B|2−2nε
2

The proof of Prop. 1 follows from Sanov’s theorem [29,
Thm 12.4.1] and Pinsker’s Inequality [33, Problem 3.18].

Therefore, as the sample size n increases, the probability of
having a poor empirical estimator of the true distribution in
terms of L1-norm decreases with rate (n+1)|A||B|2−2nε

2

. This
proposition allows us to formulate corollaries of the following
form, here by combining it with Theorem 1:

Corollary 1. Le qA,B be the empirical distribution over n

samples, and let 0 < ε ≤ 1
2 . Then,∣∣∣J(pA,B , p

∗
B̂|B)− J(qA,B , p

∗
B̂|B)

∣∣∣ ≤ 3ε log
|A||B|
ε

(9)

EpB̂,B

[
d(B̂, B)

]
≤ ∆ + dmaxε (10)

with probability (n+ 1)|A||B|2−2nε
2

This corollary shows the impact on the privacy-accuracy
tradeoff of the number of samples available to estimate the
distribution and the size of the alphabets.

V. OPTIMIZATION SIZE REDUCTION BY QUANTIZATION

In real-world datasets, the alphabet B is often large. In
particular, the number of symbols in the alphabet B observed
in the available dataset may be θ(n), linear in the number
of samples n in the dataset. Suppose that B̂ = B. Then the
number of optimized variables in Problem (7) is θ(n2). Note
that the distortion constraint is linear in pB̂|B(b̂ | b) , but the
objective function is neither linear nor quadratic. As a result,
Optimization (7) cannot be solved using fast linear or quadratic
programming solvers. In general, the problem is hard to solve
when the size of alphabet B exceeds a few hundreds symbols.

However, in many problems of interest, data lies on a low-
dimensional manifold. For instance, in recommender systems,
the ratings of a user can be viewed as a low-dimensional vector
in the so-called latent space, whose length is the number of
latent factors [34]. In such cases, quantization is guaranteed to
reduce the dimensionality of the problem. In particular, let the
data lie in a compact d-dimensional latent space where d is
small. Then based on a standard sphere packing argument [35],
this space can be covered by k representative points such the
maximum distance of any point from the closest representative
point is θ(k−1/d). In other words, to guarantee that the
maximum distance is δ, θ((1/δ)d) representative points are
necessary. Note that this quantity is independent of the number
of data samples n.

We leverage this observation to propose an approach to
reduce the number of optimization variables. Our method
comprises three steps. First, a quantization [24] step maps
the symbols in alphabet B to |C| representative examples in
a smaller alphabet C. Second, we learn a privacy-preserving
mapping qĈ|C on the new alphabet, where Ĉ = C. Third,
the symbols in B are mapped to the representative examples
Ĉ based on the learned mapping qĈ|C . Our approach is
summarized in Algorithm 2 and Diagram 1.

Our solution has several notable properties. To begin with,
the privacy-preserving mapping qĈ|C is learned on the reduced
alphabet C. Thus, we need to solve the convex optimiza-
tion (7) for only |C||Ĉ| variables instead of |B||B̂|. In practice,
|C| � |B| and this results in major computational savings.
Second, quantization and privacy-preserving optimization are
done separately. Therefore, any quantization method can be
easily combined with our approach. In particular, we can
minimize the quantization error in the quantization step, and
then our privacy mechanism guarantees the optimal mapping
in terms of additional distortion. It should be noted that the
distance used in the quantization phase and the distortion
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Fig. 1: The quantization approach for large alphabets

function in the constraint of the privacy mapping optimization
need not be the same. In the case where they differ, the end-
to-end distortion can be obtained by first computing the value
of the distortion function for the representative points resulting
from quantization, and then adding this value to the distortion
generated by the privacy mapping. Finally, quantization ob-
viously yields a suboptimal privacy-accuracy tradeoff, since
the quantization step is an additional source of distortion.
However, in Theorem 3, we quantify how quantization affects
the privacy-accuracy tradeoff, and show that the levels of
privacy that can be achieved are not affected, but come at
the expense of a bounded amount of distortion.

In the rest of this section, we analyze Algorithm 2, which
essentially solves the following variant of problem (7):

minimize
pĈ|C

J(qA,C , pĈ|C) (11)

subject to: EpC,Ĉ

[
d(C, Ĉ)

]
≤ ∆

pĈ|C ∈ Simplex;

where alphabets B and B̂ are substituted for alphabets C and
Ĉ, and the joint distribution over A and C is defined as

qA,C(a, c) =
∑
b∼c

pA,B(a, b), (12)

where b ∼ c means that the symbol b is in the cluster
represented by center c. The above equation aggregates the
probability mass of all symbols in the cluster in its center.
The symbols in B are mapped to Ĉ according to

pĈ|B(ĉ | b) = qĈ|C(ĉ | ψ(b)), (13)

where ψ : B → C is a function that maps a symbol in B to
a cluster center in C. Note that the probability distributions
that are associated with optimization (20) are marked by q.
We now prove our main claim.

Theorem 3. Let qĈ|C be a solution to problem (20) and
pĈ|B be the corresponding mapping from B (Equation 13).
Moreover, let C be an alphabet such that max

b∈B
min
c∈C

d(b, c) ≤ r.

Then the privacy leakage J(pA,B , pĈ|B) of the mapping pĈ|B
is equal to the value of the objective function of (20):

J(pA,B , pĈ|B) = J(qA,C , qĈ|C),

and its total distortion rate is no more than r larger than the
target ∆:

EpB,Ĉ

[
d(B, Ĉ)

]
≤ ∆ + r.

Proof: The information-leakage equality can be proved
as follows. First, both J(pA,B , qĈ|B) and J(qA,C , qĈ|C) can

be rewritten as

J(pA,B , qĈ|B) = H(pA) +H(pĈ)−H(pA,Ĉ) (14)

J(qA,C , qĈ|C) = H(qA) +H(qĈ)−H(qA,Ĉ), (15)

where

p(a, ĉ) =
∑
b

q(ĉ|ψ(b))p(a, b) (16)

q(a, ĉ) =
∑
c

q(ĉ|c)q(a, c). (17)

Second, note that

p(a, ĉ) =
∑
b

q(ĉ|ψ(b))p(a, b)

=
∑
c

q(ĉ|c)
∑
b∼c

p(a, b)

=
∑
c

q(ĉ|c)q(a, c)

= q(a, ĉ). (18)

The two distributions are identical, thus H(pA,Ĉ) = H(qA,Ĉ).
An analogous result holds for the entropies of the marginals.
As a result, the privacy leakage of the mapping qĈ|B on B is
equal to the privacy leakage of the mapping qĈ|C on C.

The distortion inequality is proved as follows. (13) implies

qB,Ĉ(b, ĉ) =
∑
a

qĈ|B(ĉ|b)pA,B(a, b)

=
∑
a

qĈ|C(ĉ|ψ(b))pA,B(a, b). (19)

Based on this equality, we can bound the distortion as

EqB,Ĉ

[
d(B, Ĉ)

]
=
∑
b,ĉ

q(b, ĉ)d(b, ĉ)

=
∑
a,b,ĉ

q(ĉ|ψ(b))p(a, b)d(b, ĉ)

=
∑
a,c,ĉ

q(ĉ|c)
∑
b∼c

p(a, b)d(b, ĉ)

≤
∑
a,c,ĉ

q(ĉ|c)
∑
b∼c

p(a, b)[d(b, c) + d(c, ĉ)]

=
∑
a,c,ĉ

q(ĉ|c)
∑
b∼c

p(a, b)︸ ︷︷ ︸
q(a,c)

d(c, ĉ) +

∑
a,c

∑
ĉ

q(ĉ|c)︸ ︷︷ ︸
1

∑
b∼c

p(a, b)d(b, ψ(b))

≤ EqC,Ĉ

[
d(C, Ĉ)

]
+ r

∑
a,b

p(a, b)

≤ ∆ + r.
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Algorithm 2 Quantized privacy mapping design.

Input: prior pA,B
for all (a, c) ∈ (A, C) do

qA,C(a, c)←
∑
b∼c pA,B(a, b)

end for
solve the convex optimization problem over pĈ|C :

minimize
pĈ|C

J(qA,C , pĈ|C)

subject to EpC,Ĉ

[
d(C, Ĉ)

]
≤ ∆

pĈ|C ∈ Simplex;

return optimal solution qĈ|C
for all (b, ĉ) ∈ (B, Ĉ) do

pĈ|B(ĉ|b)← qĈ|C(ĉ|ψ(c))
end for
Output: mapping pĈ|B

Theorem 3 states that the information leakage of the map-
ping pĈ|B is the same as that of the optimized mapping qĈ|C .
So we optimize the quantity of interest J(pA,B , pĈ|B) in a
time which is independent of the size of the input alphabet
B. The total distortion increases due to quantization, linearly
with the maximum distance r between any example b and its
closest representative example ψ(b).

The maximum distance r can be minimized by existing
quantization techniques, e.g. online k-center clustering [25]
and cover trees [26]. Both methods quantize data nearly
optimally. In particular, if the minimum quantization error by
|C| examples is r∗, then the maximum error produced by these
methods is 8r∗. Note that finding |C| examples that minimize
the quantization error is NP hard.

VI. DATASETS

In order to evaluate our framework, we apply it to two
datasets. The first one, the Census data is a well-known
publicly available dataset used by the machine-learning com-
munity. The other one, called Politics-and-TV, is a dataset on
political convictions and TV preferences, that we collected
by conducting a survey, as explained in Section VI-B. In
this paper, datasets (politics and TV, census) are used to
estimate the prior distribution pA,B . Once this estimate is
available, we study how to design a privacy mapping that can
be applied to the data of an individual privacy-conscious user.
We use the Census dataset to illustrate the basic performance
of Algorithm 1. We evaluate Algorithm 2 on the Politics-and-
TV datasets. The Politics-and-TV data has a high-dimensional
alphabet and thus allows us to evaluate how quantization
influences our ability to provide privacy. We present the
optimal privacy-accuracy curve for each case, and give some
insights on the privacy mappings.

A. Census Dataset

The Census dataset is a well studied dataset in the Machine
Learning community ( [36] and references therein). Based
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Fig. 2: Box plots of ratings for 12 TV shows by Democrats
(D) and Republicans (R)

on the 1994 Census, the dataset is a sample of the United
States population, and contains both categoric and numerical
features. More precisely, for each entry in the dataset, there are
features such as age, workclass, education, gender, and native
country, as well as income category (smaller or larger than 50k
per year). For our purposes, we consider the information to be
released publicly as the education, gender, and age, while the
income category is the private information to be protected. It
is noteworthy to know that about 76% of the people in the
dataset have an income smaller than 50k.

Our privacy mechanism in this case uses erasures. Erasure
policies are ones in which we advise a user how to modify
their public profile before it is released, by erasing 1, 2 or 3
pieces of information, in order to make it hard to infer income
category. The suggestion is tailored to each individual.

The joint probability distribution pA,B is estimated over
the available data. Because of the discrete nature of the data,
the low dimension of the feature space considered, and the
large number of available observations (about 50,000 entries),
the joint distribution can be estimated easily with very high
confidence. In this case, there is essentially no prior mismatch.

B. Politics and TV Dataset

The Politics-and-TV dataset gathers data on political con-
victions and TV preferences of viewers in the USA in Fall
2012. The collection of such data was motivated by large scale
surveys such as [37], [38], which illustrated that the audiences
for a number of TV shows can be distinctly characterized.
Opinion polls have also published articles in the press with
lists of top-10 or 20 TV shows that are most indicative
of political affiliation. For example, The Colbert Report is
predominantly watched by Democrats, whereas Fox News
and Swamp Loggers are primarily watched by Republicans.
We thus started from the premise that it is possible to use
public information about a user’s TV preferences, such as
the list and ratings of TV shows he watches, to infer some
private information, namely political convictions. It should be
noted that fewer than 1% of Facebook users disclose their



10

political views in their public profile, which seems to indicate
that political convictions are deemed private information. We
describe hereafter the data collection process, and our dataset.

Data Collection: We designed a survey that users take vol-
untarily. In our survey, users were first asked to provide
demographic information (gender, age group, state they live in)
as well as their political views (Democrat, Republican). Then
users were asked to complete a sequence of 6 panels, each
panel presenting the user with 6-8 TV shows of a certain genre,
namely Sitcoms, Reality Shows, TV series, Talk Shows, News,
and Sports, for a total of 50 TV shows. Users were asked to
rate only those TV shows that they watched on a scale from
1 to 5— the usual star rating system. After providing their
ratings, users were shown, for each genre, how their ratings
compared with the average ratings given by Democrats and
Republicans. In our privacy policy, users were informed that no
private information that can be used to identify an individual
was stored— we did not store cookies, nor IP addresses, etc.
Thus the data collected is by consenting users.

We ran our survey in two phases. In phase 1 (October
2012), we ran it on Mechanical Turk requesting only US-
based workers. An initial experiment revealed that 80% of
users completing the survey were Democrats. To diminish
this bias, we reran the survey in two batches. For the first
batch, we limited the user pool to Democrats only, and in
the second batch we limited it to Republicans only. This
mechanism helped although it still did not produce equal
numbers of Democrats and Republicans. In total, we obtained
854 surveys, with 518 Democrats and 336 Republicans. In
phase 2 (November 2012), we launched our survey on the
public web at www.PoliticsandMedia.org. We drove traffic
to the survey website by running advertising campaigns on
MyLikes.com and Google AdWords, shortly before the U.S.
2012 presidential election. From this, we obtained another 364
completed surveys, with 226 Democrats and 138 Republicans.
We conducted this survey in two places (Mechanical Turk and
the Web) to create more diversity of users in our survey. An
advantage of the Mechanical Turk approach is that users are
incentivized to properly complete the survey. We threw out
surveys which were clearly never finished, e.g. no ratings, and
the numbers above reflect the final retained surveys.

Dataset: The dataset contains entries for 1,218 users, broken
into 744 Democrats, and 474 Republicans. For each user,
the entry is a vector [age, gender, state,politics, r1, . . . ...r50]
where ri ∈ {0, 1, . . . , 5} is the user’s star rating for show i if
the user rated the show, and 0 otherwise. The 5 most watched
TV shows are The Daily Show with Jon Stewart, The Colbert
Report, NFL, The Big Bang Theory, and Family Guy. In the
sequel, we will consider two versions of the rating vector:
the 5-star rating vector R ∈ {0, 1, . . . , 5}50, and the binarized
rating vector B ∈ {0, 1}50. The binarized rating bi of show i
is obtained by setting bi = 1 if the original rating ri >= 4
(the user likes the show), and bi = 0 otherwise.

VII. RESULTS

A. Baseline Convex optimization and mismatched priors on
Census

We demonstrate here a direct application of the convex
optimization approach Algorithm-1 described earlier on the
Census dataset. This can be seen as a simple application
as we do not need to apply a quantization step. For this
dataset, we will use the erasure-distortion approach meaning
that our proposed distortion to an individual’s public data (age,
education, and gender) may be to remove a subset of features.
In this way, we distort without lying, and our distortion metric
is the number of erasures.

Formally, let B(u) = (b1, b2, b3, a) be the features of
user u, where b1 ∈ {male, female}, b2 ∈ {young, adult,
old} and b3 ∈ {high-school, college degree, master degree,
doctorate}. The feature a is the private attribute defined
as a ∈ {high, low} where high/low refers to an income
above/below 50K$ respectively. In this case the output
alphabet B̂ after the privacy mapping is larger than the input
alphabet B as each feature can be replaced by an erasure.
Because of the mapping restriction pb̂|b can have non zero
values if b and b̂ differ only in positions where b̂ has an
erasure. We define the distortion metric d(b̂, b) as the number
of erasures in b̂, when b and b̂ match in non-erasure positions
and d(b̂, b) =∞ otherwise.

We have tested the algorithm for different distortion con-
straint values and obtained the black privacy-distortion curve
shown in Fig. 4. The y-axis captures the privacy leakage
measured by the mutual information. The x-axis quantifies the
distortion in terms of average number of erasures. Without
any distortion (0 erasures), the privacy leakage, or mutual
information, is 0.15 bits. If, on average, we erase one of
the three features in these user profiles, then the privacy
leakage drops to roughly 0.025 bits. This can be interpreted
as requiring an adversary to ask many more questions in
order to learn the private information. Perfect privacy (mutual
information is zero) is obtained when the expected erasures is
1.5 features (out of three). This confirms that gender, age and
education are related to one’s income.

To illustrate the impact of mismatched priors in Fig. 4, we
have also generated estimates qA,B of the true prior pA,B by
using only a subset of the data, resp. 1%, 10%, 50% and 80%
of the available data. For each prior estimate, we can generate
mappings q∗

B̂|B . In Fig. 4, the dashed curves correspond to
the actual leakage J(pA,B , q

∗
B̂|B). Except the 1% samples

estimate, the privacy-utility curves that we obtain are very
close to the optimal, and increasingly close as we improve the
quality of the estimate by taking more and more samples. This
shows the stability of the optimization problem against small
variations of the prior input, and demonstrates how nearly
optimal mappings can be found even though the estimated
prior is not perfect. On the other hand, if the estimated prior
is too poor, it is hard to give any guarantees on the nearly-
optimality, as it can be seen from the 1% dashed curve. Yet,
the privacy leakage is still decreasing as a function of the
available distortion, which is the desired behavior.
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Original features Private mapping
1 < 50k male young College male - -
2 N male adult College - adult College
3 < 50k male young HS male - HS
4 N male adult HS male - HS
5 < 50k female young HS - - -
6 < 50k female young College - - -
7 > 50k male adult Masters male - -
8 < 50k female adult College - adult College

Fig. 3: Most probable mapping for the Top 8 categories in the
Census Dataset. Initially some set of attributes may be highly
correlated with income (denoted by < 50k and > 50k), or be

more neutral (denoted by N). HS stands for High School degree.
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Fig. 4: Census data: Privacy Distortion curve,
and impact of mismatched priors

To provide more insights on the privacy mapping, we have
represented some specific cases of mappings in Fig. 3. We
see that different inputs features are mapped to the same
output, e.g., rows 1 and 7 are both mapped to ’male’ with
two erasures. By observing the latter, the adversary cannot
determine whether the original features were those from row
1 or those from row 7— this creates confusion on the income.

B. Mismatched prior and quantization on Politics-and-TV

We demonstrate here a more realistic privacy preservation
application over the Politics-and-TV dataset described earlier.

Consider the setting where a user wishes to release his
TV show ratings R ∈ {0, 1, . . . , 5}50 (or B ∈ {0, 1}50),
in the hope of getting good recommendations, but is con-
cerned about them leaking information about his political
affiliation A ∈ {Democrat,Republican}. Note that although
we focus on the case where the private data is a single
variable representing political affiliation, the privacy-accuracy
framework [7] can handle protecting a set of private variables,
e.g. we could protect any subset of a user’s three attributes
[age,gender, politics]. The rating vector R (resp B) lives in a
large alphabet of size 650 (resp. 250)2. Solving Algorithm 1
over 6100 variables would be intractable, and justifies resorting
to quantization. In this section, we first describe the privacy
threat on political affiliation from the release of TV show
ratings, then we characterize the privacy-accuracy trade-off
under quantization. We illustrate the success of our privacy
approach by showing how an inference algorithm degrades
down to an uninformed guess at perfect privacy. Finally, we
compare the quality of recommendations based on the actual
user ratings versus the privatized ratings.
Privacy threat: The threat comes from the underlying exis-
tence of TV shows that are highly correlated with political
affiliation, e.g. The Daily Show is predominantly liked by
Democrats, while Fox News is preferred by Republicans. Fig.
2 shows boxplots of ratings for 12 shows—two shows from
each genre in the dataset— by Democrats and Republicans.

2The number of survey samples is small relative to the size of the alphabet.
Estimating the prior pA,R from the dataset may lead to a mismatched prior.

Those shows for which there is little overlap in the opinions
of Republicans and Democrats clearly demonstrate high corre-
lation between political affiliation and opinion of those shows.
Such shows have high discriminative power that inference
algorithms can exploit. There exists a broad variety of shows
in terms of their discriminative power - some are very much
so, while others exhibit low correlation. Users who rate highly
shows such as The O’Reilly Factor, or The Daily Show, may
be facing a stronger threat than those who only watch and
rate shows with little discriminating power. Broadly speaking,
across our 50 shows, we found that roughly one third of them
have strong correlation with political affiliation.

To understand the inherent threat in this dataset, we quan-
tify the potential privacy leakage using mutual information
I(A;R). To provide an illustrative example, we consider a
reduced set of our data for which we can compute the mutual
information. We consider the top 5 most seen TV shows, and
use the binarized version of the rating vector with ratings in
{0, 1}5. For this case, we observe that the mutual information
between the observed features and the political orientation is
already at 0.191 bits. An adversary, with this information on
hand (the 5 tuple of binarized ratings), could use a maximum
a posteriori (MAP) detector and guess the political affiliation
of somebody with an accuracy of 71%. Hence, the privacy
threat is real. Note that because mutual information is a non-
decreasing function, as we add additional shows, the threat
either stays the same or increases.
Privacy-accuracy trade-off: We now apply our quantization
approach and investigate its impact on the privacy-distortion
tradeoff. We first consider the full dataset (all 50 shows) with
the binarized version of the ratings. For this scenario we use
an exchange-distortion in which we exchange on TV show for
another. We use Algorithm 2 that first quantizes the data using
a clustering algorithm (K-means with a Hamming distance)
into 25 clusters; then we apply the convex optimization on
the quantized points. The resulting tradeoff is depicted by the
blue curve in Fig. 5. The curve shows that the quantization
step alone introduces an average Hamming distortion of about
12% (leftmost point on x-axis) per rating, or 6.1 over all 50
shows, and results in a mutual information of 1.6 bits on the
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Fig. 5: Politics & TV data: Privacy-
accuracy trade-off on binarized ratings
after quantization.
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Fig. 6: Politics & TV data: Privacy-
accuracy trade-off on actual ratings after
quantization.
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Fig. 7: Politics & TV data: ROC curve
of a logistic regression classifier for the
political views based on TV show ratings

representative points (cluster centers). As this is still high,
we are motivated to apply further distortion. Fig. 5 shows
that using the optimal privacy mapping resulting from convex
optimization, we can steadily decrease the privacy threat with
increasing distortion. Not only is our privacy-distortion curve
properly behaved, but small increases in Hamming distance
bring the privacy leakage down quickly. Moreover, we can
achieve perfect privacy (I = 0) at the cost of an additional
6% in average Hamming distortion (beyond the clustering
distortion). Perfect privacy is achieved at an overall Hamming
Distortion of less than 10 out of 50; put alternatively, perfect
privacy is obtainable if on average we change just less than
20% of a user’s rating data before it is released.

We next consider the same tradeoff using the version of our
data with the actual ratings. We use K-means clustering with
squared L2 distance, and the results are given by the blue curve
in Fig 6. We cannot calculate the original mutual information
because we do not know the distribution of actual ratings
(the number of unique rating vectors is too large compared
to the size of our data set), but the mutual information after
quantization is 0.201. The quantization step introduces an
average squared L2 of 4.66. Using the actual ratings requires
slightly higher distortion to reach perfect privacy than with
binarized ratings. In this case, we are able to achieve perfect
privacy with an extra squared L2 distortion of about 1.2.

In Table I, some privacy mappings are represented. Recall
that mappings go from clusters, to clusters, therefore we chose
to characterize each cluster by the top three TV shows for
people from that cluster. The results are intuitive, and we
see for example that some clusters associated with politically
neutral shows (such as the Family Guy, NFL, Dexter cluster)
are mostly mapped to themselves. On the other hand, some
cluster are associated with political shows (For example the
third cluster in Table. I contains Daily Show and Colbert
Report), and are therefore mapped to other clusters. Because of
the distorition constraint, it is mapped with highest probability
to a cluster which shares some neutral TV shows (For example
the thrid cluster is mapped to a neutral cluster NFL, Dexter,
Family Guy which shares Family Guy with the initial cluster).
Inference defeat: The previous plots show the reduction in
privacy leakage that is achieved by our distortion. Another

key performance metric is to examine how much the accuracy
of a Democrat/Republican classifier is reduced when distorted
ratings are used instead of the non-distorted ones. We consider
the example of a logistic regression classifier to infer political
affiliation (similar to the one used in [4] to infer gender from
movie ratings). We used 10-fold cross validation on our full
dataset, considered both cases of actual and binarized ratings,
and a distortion that achieves perfect privacy (I = 0). After
perturbing the ratings to reach I = 0, any inference algorithm
cannot perform better than an uninformed guess. In Fig. 7 we
plot the false positive rate, the number of Democrats falsely
classified as Republicans, against the true positive rate, the
number of Republicans who are correctly classified. With a
distortion bound of ∆ = 1, we see that we can significantly
reduce the classifier’s performance but not yet reach perfect
privacy; however with ∆ = 2 the classifier is reduced to
nothing more than an uninformed classifier. This demonstrates
that our approach can indeed successfully render inference
attempts useless. Finally, note that logistic regression also
performs almost equally well with binarized and actual ratings,
which means merely perturbing existing ratings is not enough.
The adversary can ignore the actual rating values, consider
only binarized ratings, and classify almost equally well on
whether or not a user rated a show. Therefore, we must add
and/or delete ratings to protect privacy.

In addition to the ROC curve, we also depict the evolution
of the probability of success of a MAP estimator, as we
increase distortion, by the green curves in Fig. 5 and Fig. 6.
More precisely, the MAP estimator tries to infer the Political
view from the distorted ratings. We see that the probability
of success of this estimator decreases as we introduce more
and more distortion, starting around 72% success rate, both
in the binarized case in Fig. 5, and in the full ratings case in
Fig. 6, and attains the baseline 61% of an uninformed random
guess, which precisely corresponds to the ratio of democrats in
the dataset. Indeed, an uninformed random guess that always
outputs Democrat (most probable political views given the
prior distribution) as the result of its inference, regardless of
the ratings, always yields a 61% success rate.
Recommendation quality: As a final performance metric, we
consider the impact of our distortion on the recommendations
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Initial Cluster Privacy Mapping
N Family Guy NFL Dexter Family Guy NFL Dexter
R FOX News NFL O’Reilly Factor Daily Show NFL Colbert Report
D Daily Show Colbert Report Family Guy NFL Dexter Family Guy
D Daily Show Colbert Report Dexter Daily Show Colbert Report Dexter
N Modern Family The Big bang theory CNN Modern Family The Big bang theory CNN

TABLE I: Some privacy mappings from clusters to clusters. Each row is a cluster by the 3 most seen TV shows for people
within that cluster. Initially, some cluster may be highly correlated with a political affiliation (denoted by D and R), or may
be more neutral (denoted by N) in the sense that the distribution of democrats and republicans in the cluster is close to the
base distribution in the dataset.

that would be produced by a recommender system based on
matrix factorization (MF) [34].Using 5-fold cross validation,
we split the rating dataset into a training set containing
80% of the data, representing non-privacy conscious users
on which the MF recommendation system is trained using
alternating least squares [34]; and a test set containing 20%
of the data, representing privacy-conscious users on which
the recommendation system is tested both on the original
ratings and on the distorted ratings. Our goal is to compare
the relevance of recommendations when the privacy-conscious
user does not distort his ratings versus the case where he
distorts his ratings using the privacy mapping. The random
splitting into training and test sets is done 5 times as shown
by the columns of Table II. The MF recommendation system
works by trying to predict the ratings of TV shows that
have not been rated by the user, from the ratings of TV
shows that have been rated by the user. In practice, in the
testing phase, we first randomly set aside a subsest I of
10% of the ratings in the test set, and try to predict them
using the recommendation system. The prediction is done
twice: once based on the original ratings, and once based on
the distorted ratings. The quality of the recommendation is
measured by the Root Mean Square Error (RMSE) in rating
prediction, defined by RMSE =

√∑
i∈I(r̂i − ri)2, where ri

denotes the true rating for TV show i, whereas r̂i denotes the
predicted rating. In Table II, RMSE1 is computed for ratings
predicted based on original ratings, whereas RMSE2 computed
for ratings predicted based on distorted ratings. We can see
that the degradation in the RMSE of rating prediction, due
to the use of the privacy mapping to distort ratings, is small.
Recently, in [20], even better results were obtained by coupling
quantization with dimensionality reduction, prior to distortion.

VIII. CONCLUSION

Privacy attacks are receiving more and more attention, both
from a theoretical perspective, and from a practical point of
view. The amount of information shared everyday, and the
recent improvements in inference models have brought in the
attention of all, the urge for effective yet private systems. This
fundamental contradiction is the core of the privacy problem.
In this paper, we show a practical approach to privacy that

TABLE II: Rating prediction RMSE

Set 1 2 3 4 5
RMSE1 1.2506 1.1820 1.2461 1.2155 1.2101
RMSE2 1.6972 1.6763 1.6215 1.7248 1.8036

has roots in a strong theoretical framework. We show that is
possible to have private systems by adding a layer of privacy,
without changing the way the data is processed afterwards,
or its purpose. Using techniques from different fields, such
as information theory, convex optimization, estimation, and
quantization, we address some challenges introduced by the
diversity and complexity of real world data. Namely we show
that a mismatched prior estimation does not hurt too much in
terms of privacy-distortion tradeoff. Moreover, we propose a
generic methodology to deal with large data through quantiza-
tion. We show that distortion grows linearly in the quantization
error, and that the privacy leakage remains controlled.

APPENDIX A
PROOF OF THEOREM 1

The following lemma [29], which bounds the difference in
the entropies of two distributions, will be useful in the proof
of the Theorems.

Lemma 1 ( [29, Thm 17.3.3]). Let p and q be distributions
with the same support X such that ‖p− q‖1 ≤

1
2 . Then:

|H(p)−H(q)| ≤ ‖p− q‖1 log
|X |

‖p− q‖1
.

Proof of Theorem 1: The first inequality can be proved in
four steps. Initially, we note that the objective function can be
rewritten as

J(pA,B , pB̂|B) = H(pA) +H(pB̂)−H(pA,B̂). (20)

Therefore, the difference between the objective functions with
respect to pA,B and qA,B is bounded as:

∣∣∣J(pA,B , pB̂|B)− J(qA,B , pB̂|B)
∣∣∣ (21)

≤ |H(pA)−H(qA)| +

|H(pB̂)−H(qB̂)| +

|H(pA,B̂)−H(qA,B̂)|.

The bound in Lemma 1 can be used to bound each of the
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terms in Equation (21). For instance:∥∥∥pA,B̂ − qA,B̂∥∥∥
1

=
∑
a,b̂

∣∣∣∣∣∑
b

p(b̂|b)[p(a, b)− q(a, b)]

∣∣∣∣∣
≤
∑
a,b,b̂

p(b̂|b) |p(a, b)− q(a, b)|

=
∑
a,b

∑
b̂

p(b̂|b)

︸ ︷︷ ︸
1

|p(a, b)− q(a, b)|

= ‖pA,B − qA,B‖1 (22)

and therefore:

|H(pA,B̂)−H(qA,B̂)| (23)

≤ ‖pA,B − qA,B‖1 log
|A| |B|

‖pA,B − qA,B‖1
.

Similarly, it can be shown that:

|H(pA)−H(qA)| (24)

≤ ‖pA,B − qA,B‖1 log
|A|

‖pA,B − qA,B‖1
|H(pB̂)−H(qB̂)| (25)

≤ ‖pA,B − qA,B‖1 log
|B|

‖pA,B − qA,B‖1
.

Finally, the three upper bounds can be substituted into Equa-
tion (21), which yields:∣∣∣J(pA,B , pB̂|B)− J(qA,B , pB̂|B)

∣∣∣ (26)

≤ 3 ‖pA,B − qA,B‖1 log
|A| |B|

‖pA,B − qA,B‖1
.

Our first claim is proved by substituting p∗
B̂|B for pB̂|B in the

above equation.
The proof of our second claim is based on the inequality:∣∣∣EpB̂,B

[
d(B̂, B)

]
− EqB̂,B

[
d(B̂, B)

]∣∣∣
=

∣∣∣∣∣∣
∑
a,b,b̂

p(b̂|b)[p(a, b)− q(a, b)]d(b, b̂)

∣∣∣∣∣∣
≤
∑
a,b,b̂

p(b̂|b)d(b, b̂) |p(a, b)− q(a, b)|

≤ dmax

∑
a,b

∑
b̂

p(b̂|b)

︸ ︷︷ ︸
1

|p(a, b)− q(a, b)|

= dmax ‖pA,B − qA,B‖1 . (27)

Based on this observation, it follows that:

EpB̂,B

[
d(B̂, B)

]
≤ EqB̂,B

[
d(B̂, B)

]
+

dmax ‖pA,B − qA,B‖1
≤ ∆ + dmax ‖pA,B − qA,B‖1 . (28)

The last step is due to the constraint EqB̂,B

[
d(B̂, B)

]
≤ ∆

that is enforced in our problem (7).

APPENDIX B
PROOF OF THEOREM 2

First, let us introduce some useful notation. Consider the
optimization problem 7, and denote by R(pA,B ,∆) the opti-
mal privacy leakage for input pA,B and distortion constraint
∆. We also denote by A(∆) the set of feasible mappings,
i.e., A(∆) =

{
pB̂|B : EB,B̂ [d(B, B̂)] ≤ ∆

}
. The following

lemma is useful in the proof of Thm. 2, and allows us to
construct distributions that are close in a L1 sense but have
specific expected distortions.

Lemma 2. Let q be a distribution over X such that Eq[f ] = δ,
with f a non-negative function. For any δ > 0, there exist a
distribution p over the same support, such that Ep[f ] = 0 and
‖q−p‖1 ≤ 2δ

fmin
, where fmin = minx,f(x)>0 f(x) is the smallest

non-zero value of f .

Proof: We do the proof by construction. Consider p such
that for all x ∈ X with f(x) > 0, let p(x) = 0. For all other
x ∈ X , set p(x) = q(x) +

∑
x∈X ,f(x)>0 q(x)

|x∈X :d(x)>0| , where the second
term corresponds to adding uniformly the missing mass so that∑
x p(x) = 1. We have:

‖p− q‖1 ≤
∑

x∈X ,f(x)>0

|p(x)− q(x)| (29)

+
∑

x∈X ,f(x)=0

|p(x)− q(x)| (30)

= 2
∑

x∈X ,f(x)>0

q(x) (31)

Next, we have that:

δ = Eq[f ] =
∑
x∈X

f(x)q(x) (32)

≥ fmin

∑
x∈X ,f(x)>0

q(x) (33)

≥ fmin

2
‖p− q‖1 (34)

where (34) folows from (31). Noticing that Ep[f ] = 0 gives
the desired result.
Proof of Theorem 2: Recall that we denote by R(pA,B ,∆)
the result of the optimization problem (7) with input pA,B
and distortion constraint ∆, and that we use A(∆) to denote
the feasible region of this optimization problem. We use ε =
‖p − q‖1. Our goal is to bound |R(pA,B ,∆) − R(qA,B ,∆)|.
We have:

R(pA,B ,∆ + εdmax) ≤ J(pA,B , q
∗
B̂|B) (35)

≤ J(qA,B , q
∗
B̂|B) + |J(pA,B , q

∗
B̂|B)− J(qA,B , q

∗
B̂|B)|

= R(qA,B ,∆) + |J(pA,B , q
∗
B̂|B)− J(qA,B , q

∗
B̂|B)| (36)

where (35) follows from the distortion inequality of Thm. 1
which means that q∗

B̂|B is in the feasible set A(∆ + εdmax).
Adding R(pA,B ,∆) on both sides of (36), and rearranging
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terms, we obtain:

R(pA,B ,∆)−R(qA,B ,∆)

≤ |J(pA,B , q
∗
B̂|B)− J(qA,B , q

∗
B̂|B)|

+R(pA,B ,∆)−R(pA,B ,∆ + εdmax) (37)

Notice that the first term of (37) can be bounded using Thm. 1.
The second term corresponds to the difference in the solution
of the optimization problem when we have expanded the
feasible set by allowing an additional distortion εdmax. We
have the following cases:
• p∗

B̂|B was not on the border of the feasible set A(∆).
Then, as the problem is convex, p∗

B̂|B is also a minimizing
distribution of the optimization problem with expanded
feasible set A(∆ + εdmax). Therefore, R(pA,B ,∆) −
R(pA,B ,∆ + εdmax) = 0.

• p∗
B̂|B is on the border of the feasible set A(∆). First,

notice that R(p,∆) is convex in ∆. This can be seen as
EpB̂,B

[d(B̂, B)] is linear and that the mutual information
J(pA,B , pB̂|B) is convex in pB̂|B . Therefore, if we let
∆1 and ∆2 be two distortion value, and let p∗1 and p∗2
be the respective minimizing distributions, then it is the
case that for pα = αp∗1 + (1−α)p∗2, with 0 ≤ α ≤ 1, we
have:

R(pα,∆) ≤ J(pA,B , pα) (38)
≤ αJ(pA,B , p

∗
1) + (1− α)J(pA,B , p

∗
2) (39)

= αR(pA,B ,∆1) + (1− α)R(pA,B ,∆2)
(40)

As the function R(p,∆) is convex and non-increasing
with respect to ∆, its steepest descent is at zero, that is :

R(pA,B ,∆)−R(pA,B ,∆ + εdmax)

≤ R(pA,B , 0)−R(pA,B , εdmax) (41)

Then, by Lemma 2 with f = d(B̂, B), and δ = εdmax,
there is a p̃B̂|B ∈ A(0), such that the distance between
p̃B̂|B and the minimizing distribution of the optimization
problem with expanded feasible set A(εdmax) is at most
ε 2dmax
dmin

. If ε ≤ dmin
4dmax

, we can use Lemma 1 and equations
similar to those in (22) to obtain:

R(pA,B ,∆)−R(pA,B ,∆ + εdmax)

≤ 4ε
dmax

dmin
log

dmin|A||B|
εdmax

(42)

≤ 4ε
dmax

dmin
log
|A||B|
ε

(43)

Using (43) in (37) gives the desired bound.
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