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Abstract—We propose a practical methodology to protect a user’s
private data, when he wishes to publicly release data that iscorrelated
with his private data, in the hope of getting some utility. Our approach
relies on a general statistical inference framework that captures the
privacy threat under inference attacks, given utility constraints. Under
this framework, data is distorted before it is released, according to a
privacy-preserving probabilistic mapping. This mapping is obtained by
solving a convex optimization problem, which minimizes information
leakage under a distortion constraint. We address a practical challenge
encountered when applying this theoretical framework to real world data:
the optimization may become untractable and face scalability issues when
data assumes values in large size alphabets, or is high dimensional. Our
work makes two major contributions. We first reduce the optimization
size by introducing a quantization step, and show how to generate privacy
mappings under quantization. Second, we evaluate our method on a
dataset showing correlations between political views and TV viewing
habits, and demonstrate that good privacy properties can beachieved
with limited distortion so as not to undermine the original purpose of
the publicly released data, e.g. recommendations.

I. I NTRODUCTION

One of the central problems of managing privacy in the Internet lies
in the simultaneous management of both public and private data. In
order to receive services such as recommendations, users often willing
releasesome data about themselves, such as their movie watching
history. However users also have other data they consider private,
such as income level, political affiliation, or medical conditions.
In this work, we focus on a method in which a user can release
her public data, but is able to prevent against inference attacks
that may learn her private data from the public information.Our
solution consists of a privacy mapping, which informs a userhow
to distort her public data, before releasing it, such that noinference
attacks can successfully learn her private data. At the sametime,
the distortion should be bounded so that the original service (e.g.,
recommendations) can continue to be useful.

We adopt the general privacy framework in [1] that considersthe
privacy threat incurred by a user when a passive adversary attempts to
infer the user’s private information from the user’s public(released)
data. [1] argues that the privacy loss can be measured in terms
of mutual information, which leads to an optimization formulation
similar to rate-distortion theory. This formulation, albeit general and
theoretically sound, faces a key challenge of scalability when applied
to real world datasets. The scalability issue occurs when the size of
the underlying alphabet of the user data is very large.

In this paper, we focus on this challenge. Our first contribution
is to propose a quantization approach to limit the dimensionality of
the problem, and to characterize the additional distortionintroduced
by quantization. We quantize the original data by clustering it and
then distort the data in the space defined by the clusters. Theprivacy
mapping is computed using a convex solver that minimizes privacy
leakage subject to a distortion constraint. Our scheme is compu-
tationally efficient - we reduce the number of optimized variables
from being quadratic in the size of the underlying feature alphabet
to being quadratic in the number of clusters, and thus make the
optimization independent of the number of observable data samples.
For some real world datasets, such as those common in movie and TV
recommender systems, this can lead to orders of magnitude reduction
in dimensionality. This quantization step provides a fundamental
extension to the original method in [1].

Our second contribution is a preliminary characterizationof the
impact and performance of our method, on a new dataset. In [1]
the authors only proposed and reasoned about their framework but
did not evaluate it. To the best of our knowledge, our paper isthe
first evaluation of this method. We designed and ran a survey to
collect data that contains users TV show ratings and their political
affiliation. In this case study, we consider TV show opinionsas data
to be released and a user’s political affiliation to be kept private.
The framework in [1] allows for different kinds of data distortions
such as removing an element of the user’s public data (callederasure-
distortions), altering the contents of some elements in a public profile
(calledexchange-distortions), or other forms of distortion.

Our evaluations demonstrate multiple things. First, we quantify the
threat in our dataset and show that an adversary can infer political
affiliation with roughly 71% accuracy. Second, we illustrate the
effects of quantization and distortion on privacy and show that we
can steadily reduce the threat with increasing distortion.We show
that we can achieve perfect privacy with a reasonable amountof
additional distortion. Third, we show that using limited distortion,
our method can render an example Democrat/Republican classifier
no better than an uninformed random guess. Finally, we conduct a
preliminary experiment to examine the impact of our distortion on
matrix factorization, commonly used in recommender systems, and
show that additional errors in recommendation are not significant.
For more details, the reader is referred to our research report [2].

II. PROBLEM STATEMENT

Threat Model: We consider the setting described in [1], where a
user has two types of data: some data that he would like to remain
private, e.g. his income level, his political views, and some data that
he is willing to release publicly and from which he will derive some
utility, e.g. the release of his media preferences to a service provider
would allow the user to receive content recommendations. Wedenote
byA ∈ A the vector of personal attributes that the user wants to keep
private, and byB ∈ B the vector of data he is willing to make public,
whereA andB are the sets from whichA andB can assume values.

We assume that the user private attributesA are linked to his
dataB by the joint probability distributionpA,B . Thus, an adversary
who would observeB could infer some information aboutA. To
reduce this inference threat, instead of releasingB, the user releases
a distorted version of B, denotedB̂ ∈ B̂, generated according to a
conditional probabilistic mappingpB̂|B , called theprivacy-preserving

mapping. Note that the setB̂ may differ from B. The privacy
mappingpB̂|B should be designed in a way that renders any statistical
inference ofA based on the observation of̂B harder, yet, preserves
some utility to the released datâB, by limiting the distortion caused
by the mapping. This can be modeled by a constraint∆ ≥ 0 on the
average distortionEB,B̂ [d(B, B̂)] ≤ ∆, for some distortion metric
d : B × B̂ → R

+. It should be noted that any distortion metric can
be used, such as the Hamming (resp.l2) distance ifB and B̂ are
binary (resp. real) vectors, or even more complex metrics modeling
the variation in utility, e.g. recommendation quality, that a user would
derive from the release of̂B instead ofB.

We assume the following standard statistical inference threat model
[1]: we model the average statistical inference gain∆C of the
adversary after he observeŝB, i.e. how much an adversary can reduce



his expected loss for a given loss function onS, after observing
B̂. . This statistical gain represents the gain in terms of inference
of the private attributeA. The goal of the privacy mapping is to
minimize this gain. Note that this general framework does not assume
a particular inference algorithm. Moreover, using the log-loss, it can
be shown [1] that∆C = I(A; B̂) (for a justification of the relevance
and generality of the log-loss c.f. [1, Section IV.A]). Hence, the
privacy leakage is captured by the mutual information between the
private attributesA and the publicly released datâB. In the case of
perfect privacy(I(A; B̂) = 0), the privacy mappingpB̂|B renders

the released datâB statistically independent from the private dataA.
It should be mentioned that, although we model the privacy threat
using the average cost gain in this paper, [1] also proposed aworst-
case model where the privacy threat is measured in terms of the most
informative output, i.e. the output that gives the largest gain in cost.
Note that in the case of perfect privacy∆C = 0, the average and the
worst-case threat model are equivalent. Thus conclusions drawn on
distortion to achieve perfect privacy under the average threat model
also hold for the worst-case model.
Privacy-Accuracy Framework: The mutual informationI(A; B̂) is
a function of the joint distributionpA,B̂, which in turn depends on
both the prior distributionpA,B and the privacy mappingpB̂|B , since

A → B → B̂ form a Markov chain. To stress these dependencies,
we will denote

∆C = I(A; B̂) = J(pA,B , pB̂|B).

Similarly, the average distortionEB,B̂ [d(B, B̂)] is a function of the
joint distributionpB,B̂ , which in turn depends both onpA,B , through
the marginalpB, and on pB̂|B . Consequently, given a priorpA,B

linking the private attributesA and the dataB, the privacy mapping
pB̂|B minimizing the privacy leakage subject to a distortion constraint
is obtained as the solution to the optimization problem

minimize
p
B̂|B

J(pA,B, pB̂|B) s.t. Ep
B,B̂

[

d(B, B̂)
]

≤ ∆ (1)

pB̂|B ∈ Simplex,

where Simplex denotes the probability simplex (
∑

x
p(x) =

1, p(x) ≥ 0 ∀x). It was shown in [1] that this problem is convex.
Note that it is similar to a modified rate distortion problem.
Practical Challenge in the Presence of Large Data: When
applying the aforementioned privacy-accuracy framework to large
data, we encounter a practical challenge of scalability. Designing the
privacy mapping requires characterizing the value ofpB̂|B(b̂|b) for

all possible pairs(b, b̂) ∈ B×B̂, i.e. solving the convex optimization
problem over|B||B̂| variables. WhenB̂ = B, and the size of the
alphabet|B| is large, solving the optimization over|B|2 variables
may become intractable. In Section III, we propose a method based
on quantization to reduce the number of optimization variables. We
show that the reduction in complexity does not affect the privacy
levels that can be achieved, but comes at the expense of a limited
amount of additional distortion, that we characterize.

III. PRIVACY FOR LARGE-SCALE DATA

In real-world datasets, the alphabetB is often large. In particular,
the number of symbols inB may beθ(n), linear in the number of
samplesn in the dataset. Suppose thatB̂ = B. Then the number of
optimization variablespB̂|B(b̂ | b) in problem ((1)) isθ(n2). Note

that the distortion constraint is linear inpB̂|B(b̂ | b) but the objective
function is neither linear nor quadratic, so the optimization problem
(1) cannot be solved using fast linear or quadratic programming
solvers. In general, the problem is hard to solve when the size of
alphabetB exceeds a few hundreds symbols. To address this issue, we
show how to solve our problem approximately by optimizing fewer
variables. Our solution comprises three steps. First, a quantization

Algorithm 1 Quantized privacy preserving mapping.

Input: prior pA,B

qA,C(a, c)←
∑

b∼c
pA,B(a, b) ∀(a, c) ∈ (A, C)

Solve the convex optimization problem:

minimize
p
Ĉ|C

J(qA,C , pĈ|C) s.t. Ep
C,Ĉ

[

d(C, Ĉ)
]

≤ ∆ (2)

pĈ|C ∈ Simplex,

pĈ|B(ĉ | b)← qĈ|C(ĉ | ψ(b)) ∀(b, ĉ) ∈ (B, Ĉ)

Output: mappingpĈ|B

step maps the symbols in alphabetB to |C| representative examples in
a smaller alphabetC. Second, we learn a privacy preserving mapping
qĈ|C on the new alphabet, wherêC = C. Third, the symbols inB

are mapped to the representative examplesĈ based on the learned
mappingqĈ|C . Our approach is summarized in Alg. 1.

Our solution has several notable properties. To begin with,the
privacy-preserving mappingqĈ|C is obtained for the reduced alphabet
C. Thus, we need to solve the convex optimization (1) for only
|C||Ĉ| variables. In practice,|C| ≪ |B| and this results in major
computational savings. Second, quantization and privacy-preserving
optimization are done separately. Therefore, any quantization method
can be easily combined with our approach. In particular, we can
minimize the quantization error in the quantization step, and then
our privacy mechanism guarantees the optimal mapping in terms
of additional distortion. Finally, quantization obviously yields a
suboptimal privacy-accuracy tradeoff, since the quantization step is an
additional source of distortion. However, in Theorem 1, we quantify
how quantization affects the privacy-accuracy trade-off,and show that
the levels of privacy that can be achieved are not affected, but come
at the expense of a bounded amount of distortion.

We now analyze Alg. 1. Problem (2) solves a variant of problem
(1), where alphabetsB and B̂ are substituted for alphabetsC and Ĉ,
and the joint probability distribution overA andC is defined as

qA,C(a, c) =
∑

b∼c pA,B(a, b), (3)

whereb ∼ c means that the symbolb is in the cluster represented by
centerc. The above equation aggregates the probability mass of all
symbols in the cluster in its center. The symbols inB are mapped to
Ĉ according to

pĈ|B(ĉ | b) = qĈ|C(ĉ | ψ(b)), (4)

whereψ : B → C is a function that maps a symbol inB to a cluster
center inC. Note that the probability distributions that are associated
with optimization (2) are marked byq. Now we state our main claim.

Theorem 1. Let qĈ|C be a solution to problem (2) and pĈ|B be the
corresponding mapping from B (Equation 4). Moreover, let C be an
alphabet such that max

b∈B
min
c∈C

d(b, c) ≤ r. Then the privacy leakage

J(pA,B, pĈ|B) of the mapping pĈ|B is equal to the value of the
objective function of (2):

J(pA,B , pĈ|B) = J(qA,C , qĈ|C),

and its total distortion rate is no more than r larger than the target ∆:

Ep
B,Ĉ

[

d(B, Ĉ)
]

≤ ∆+ r.

Theorem 1 (proof in [2]) states that the information leakageof the
mappingpĈ|B is the same as that of the optimized mappingqĈ|C . So
we optimize the quantity of interestJ(pA,B, pĈ|B) in a time which
is independent of the size of the input alphabetB. The distortion rate
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Fig. 1: Box plots of ratings for 10 TV shows
by Democrats (D) and Republicans (R)
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Fig. 2: Privacy-accuracy tradeoff after quan-
tization on binarized ratings, and full ratings
(inset)
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Fig. 3: ROC curve of a logistic regression of
political views based on TV show ratings

increases due to quantization, linearly with the maximum distancer
between any exampleb and its closest representative exampleψ(b).

The maximum distancer can be minimized by existing clustering
methods, such as onlinek-center clustering [3]. It can be shown by
a simple ball backing argument that this method clusters data such
that r ≤ 8/|C|−

1

d , whered is the intrinsic dimension of data.

IV. DATASET

To evaluate our framework, we collected a datasetPolitics-and-TV,
on political views and TV preferences. The collection of such data
was motivated by large scale surveys [4], [5], which illustrated that
correlations exist between TV show ratings and political views.
Data Collection: We designed a survey that users take voluntarily.
Users were first asked to provide demographic information (gender,
age group, state they live in) as well as their political views (Demo-
crat, Republican). Then users were asked to complete a sequence of 6
panels, each panel presenting the user with 6-8 TV shows of a certain
genre, namely Sitcoms, Reality Shows, TV series, Talk Shows, News,
and Sports, for a total of 50 TV shows. Users were asked to rateonly
those TV shows that they watched on a scale from 1 to 5— the usual
star rating system. After providing their ratings, users were shown,
for each genre, how their ratings compared with the average ratings
given by Democrats and Republicans. In our privacy policy, users
were informed that private information that can be used to identify
an individual, e.g. cookies, IP addresses, was not stored.

We ran our survey in two phases. In phase 1 (October 2012),
we ran it on Mechanical Turk requesting only US-based workers.
In total, we obtained 854 surveys, with 518 Democrats and 336
Republicans. In phase 2 (November 2012), we launched our survey on
the public web at www.PoliticsandMedia.org. We drove traffic to the
survey website by running advertising campaigns on MyLikes.com
and Google AdWords, shortly before the U.S. 2012 presidential
election. From this, we obtained another 364 completed surveys, with
226 Democrats and 138 republicans.
Dataset: The dataset contains entries for 1218 users, broken into
744 Democrats, and 474 Republicans. For each user, the dataset
entry is a vector[age, gender, state,politics, r1, . . . ...r50] where
ri ∈ {0, 1, . . . , 5} is the user’s star rating for showi if the user
rated the show, and 0 otherwise. We consider two versions of the
rating vector: the 5-star rating vectorR ∈ {0, 1, . . . , 5}50, and the
binarized rating vectorB ∈ {0, 1}50. The binarized ratingbi of show
i is obtained by settingbi = 1 if the original ratingri >= 4 clearly
indicating that the user likes the show, andbi = 0 otherwise.

TABLE I: RMSEs of |r − r̂| and |r − ˆ̂r|

Set 1 2 3 4 5
RMSE1 1.2506 1.1820 1.2461 1.2155 1.2101
RMSE2 1.6972 1.6763 1.6215 1.7248 1.8036

V. RESULTS

Consider the setting where a user wishes to release his TV show
ratingsR ∈ {0, 1, . . . , 5}50 (or B ∈ {0, 1}50), in the hope of getting
good recommendations, but is concerned about them leaking infor-
mation about his political affiliationA ∈ {Democrat,Republican}.
Note that although we focus on the case where the private datais a
single variable representing political affiliation, the privacy-accuracy
framework [1] can handle protecting a set of private variables, e.g.
we could protect any subset of a user’s three attributes [age,gender,
politics]. The rating vectorR (reps.B) lives in a large alphabet of
size 650 (resp.250) over 6100 variables would be untractable, and
justifies resorting to quantization. Note that the number ofsamples
is small relative to the alphabet size, and the priorpA,R estimated
from the dataset may be mismatched, issue addressed in [2].
Privacy threat: The threat comes from the underlying existence of
TV shows that are highly correlated with political affiliation, e.g.The
Daily Show is predominantly liked by Democrats, whileFox News
is preferred by Republicans. Fig. 1 shows boxplots of ratings for 12
shows—two shows from each genre in the dataset— by Democrats
and Republicans. Those shows for which there is little overlap in
the opinions of Republicans and Democrats clearly demonstrate high
correlation between political affiliation and opinion of those shows.
Such shows have high discriminative power that inference algorithms
can exploit. There exists a broad variety of shows in terms oftheir
discriminative power - some are very much so, while others exhibit
low correlation. Users who rate highly shows such asThe O’Reilly
Factor, or The Daily Show, may be facing a stronger threat than
those who only watch and rate shows with little discriminating power.
Broadly speaking, across our 50 shows, we found that roughlyone
third of them have strong correlation with political affiliation.

In order to understand the threat inherent in this dataset, we
quantify the potential privacy leakage using mutual information
I(A;R). To provide an illustrative example, we thus consider a
reduced set of our data for which we can compute the mutual
information. We consider the top 5 most seen TV shows, and use
the binarized version of the rating vector with ratings in{0, 1}5.
For this case, we observe that the mutual information between the
observed features and the political orientation is alreadyat0.191 bits.
An adversary, with this information on hand (the 5 tuple of binarized
ratings), could use a maximum a posteriori (MAP) detector and guess
the political affiliation of somebody with an accuracy of71%. Hence,
the privacy threat is real. Note that because mutual information is a
non-decreasing function, as we add additional shows, the threat either
stays the same or increases.
Privacy-accuracy trade-off: We now apply our quantization ap-
proach and investigate its impact on the privacy-distortion tradeoff.
We first consider the full 50 show dataset with the binarized version of
the ratings. Alg. 1 first quantizes the data using a K-means clustering
algorithm with a Hamming distance metric and K=25 clusters;then



we apply the convex optimization on the quantized points. The
resulting trade-off curve is depicted in Fig. 2. The curve shows
that the quantization step alone introduces an average Hamming
distortion of about12% (leftmost point on x-axis) per rating, or6.1
over all 50 shows, and results in a mutual information of0.189 on
the representative points (cluster centers). As this is still high, we
are motivated to apply further distortion. Fig. 2 shows thatusing
the optimal privacy preserving scheme resulting from convex opti-
mization, we can steadily decrease the privacy threat with increasing
distortion. Not only is our privacy-distortion curve properly behaved,
but small increases in Hamming distance bring the privacy leakage
down quickly. Moreover, we can achieve perfect privacy (I = 0) at
the cost of an additional3% in average Hamming distortion (beyond
the clustering distortion). Perfect privacy is achieved atan overall
Hamming Distortion of less than 7 out of 50; put alternatively, perfect
privacy is obtainable if on average we change just less than 15% of
a user’s rating data before it is released. In Fig.??, we consider the
same tradeoff with the actual 5-star ratings, and k-means clustering
with L2 distance. The mutual information after quantization is 0.182.
Perfect privacy is achieved with a total distortion of 0.8 per rating—
0.75 of which are due to quantization. The actual ratings require
slightly higher distortion to reach perfect privacy than with binarized
ratings, since their range is[0, 5] instead of{0, 1}.
Inference defeat: The previous plots show the reduction in privacy
leakage achieved by our distortion. Another key performance metric
is the reduction in accuracy of a Democrat/Republican classifier
when distorted user ratings are used instead of actual ones.We
consider the example of a logistic regression classifier to infer
political affiliation ( [6] used logistic regression to infer gender
from movie ratings). We used 10-fold cross validation on ourfull
dataset, considered both cases of actual and binarized ratings, and a
distortion that achieves perfect privacyI = 0, at which any inference
algorithm cannot perform better than an uninformed random guess.
In Fig. 3 we plot the false positive rate (number Democrats falsely
classified as Republicans), against the true positive rate (number of
Republicans correctly classified). With a distortion bound∆ = 1,
we can significantly reduce the classifier’s performance butnot reach
perfect privacy; however with∆ = 2 the classifier is reduced to an
uninformed random classifier. This demonstrates that our approach
can successfully render inference attempts unsuccessful.Finally, note
that logistic regression performs almost equally well withbinarized
and actual ratings, which means merely perturbing existingratings is
not enough, thus we must add or delete ratings to protect privacy.
Recommendation quality: As a final performance metric, we con-
sider the impact of our distortion on recommendations that would be
produced by a recommender system based on matrix factorization.
In Table I, RMSE1 captures the root mean squared error in predicted
ratings (compared to the true ratings) using unperturbed data r̂, while
RMSE2 captures the errors when ratings are predicted using the
distorted datâ̂r produced by our algorithm. The results were produced
using 5-fold cross validation and randomly removing10% of the
ratings in each test set. We can see that any additional errors in TV
recommendations, due to distorting ratings, is small. Thispreliminary
result on the impact on a recommendation system is encouraging, yet
requires further extensive testing.

VI. RELATED WORK

The prevalent notion of privacy is differential privacy [7], [8]: a
query over a database is differentially private if small variations in
the entries of the database do not significantly change the output dis-
tribution of the query. Differential privacy does not take into account
the distribution of the database entries, which makes the formulation
mathematically tractable and simplifies its implementation, and it is
robust against arbitrary side information from the attacker. However,
differential privacy does not quantify the amount of information that
is leaked by the system. Furthermore, for certain input distributions on
the database entries, an adversary might able to infer with arbitrarily

high precision the input database from a differentially private query
[1]. More general and flexible frameworks similar to differential
privacy exist such as the Pufferfish framework [9], which does not
take into account distortion of the data, and requires knowing the
adversary’s belief of the input distribution.

Another existing trend in privacy research applies information-
theoretic tools to quantify and design privacy-preservingmechanisms
[1], [10]–[14]. Information theory provides a natural framework to
measure the amount of private information that an adversarycan
learn by observing a user’s public data. This was first noted by Reed
[10]. One line of work, adopted in [11], [12], provides asymptotic
and fundamental limits on rate-distortion-equivocation regions as the
number of data samples grows arbitrarily. Non-asymptotic approaches
to information-theoretic privacy were discussed, for example, in
[1], [13], [14]. More recently, [1] introduced a general framework
for privacy against statistical inference that takes into account dis-
tortion constraints for the user’s public data. Information-theoretic
approaches have also been used to quantify the information flow in
security systems (e.g. [15] and references).

VII. C ONCLUSION

In this paper we address a key scalability challenge that arises when
applying an information theoretic framework to a privacy problem in
which a user wants to release her public data while simultaneously
protecting her private data from inference threats. The optimization
formulation cannot scale when the underlying alphabet of the user’s
public data is large. Our main contribution is to propose a method,
based upon quantization, that drastically reduces the dimensionality
of the optimization. Rendering the optimization computationally
efficient is a key step towards making our framework practical. We
evaluated our approach on a novel dataset and demonstrated that in
the use case of a recommendation system, a high level of privacy can
be achieved without a significant impact on the recommendations.
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