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Abstract. The main idea behind the Semantic Web is the representation of 

knowledge in an explicit and formal way. This is done using ontology 

representation languages as OWL, which is based on Description Logics and 

other logic formalisms. One of the main objectives with this kind of knowledge 

representation is that it can then be used for reasoning. But the way reasoning is 

done in the Semantic Web technology is very strict, defining only a right and 

wrong view of the world. The real world is uncertain and humans have learned 

how to deal with this crucial aspect. In this paper, we present an approach to 

reasoning with uncertainty information in the Semantic Web. We have applied 

Markov Logic, which is able to reason with uncertainty information, to several 

Semantic Web ontologies, showing that it can be used in several applications. 

We also describe the main challenges for reasoning with uncertainty in the 

Semantic Web. 
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1 Introduction 

The idea of the Semantic Web [1] envisions a world where agents share and transfer 

structured knowledge in an open and semi-automatic way. In most of the cases, this 

knowledge is characterized by uncertainty. However, Semantic Web languages like 

OWL1 do not provide any means of dealing with this uncertainty. They are mainly 

based on crisp logic, unable of dealing with partial and incomplete knowledge. 

Reasoning in the Semantic Web resigns to a deterministic process of verifying if 

statements are true or false.  

In the last years, some efforts have been made in representing and reasoning with 

uncertainty in the Semantic Web (see [2] for a complete overview about the subject). 

These works are mainly focused on how to extend the logics behind Semantic Web 

languages to the probabilistic/possibilistic/fuzzy logics, or on how to combine these 

languages with probabilistic formalisms like Bayesian Networks. In all of these 

                                                           
1 http://www.w3.org/TR/owl-features/ 



2 Pedro Oliveira and Paulo Gomes 

approaches, this is achieved by annotating the ontologies with some kind of 

uncertainty information about its axioms, using this information to perform 

uncertainty reasoning. Nevertheless, several questions arise: how are these 

uncertainties asserted? How can reasoning be done with this uncertainty information?  

One promising approach to reasoning with uncertainty is Markov Logic [3]. In this 

type of logic there is no right and wrong world, there are multiple worlds with 

different degrees of probability. Markov Logic is based in first-order logic and 

probabilistic graphical models to deliver the probability of a given logic formula. This 

type of logic has been applied to several application domains [3] and has show to be 

robust and able to deal with uncertain knowledge. 

In our work, we are studying how we can reason about uncertainty in OWL 

ontologies without any kind of uncertainty associated. In this paper, we describe an 

approach that uses Markov Logic to accomplish this task. First, the ontology is 

interpreted as first-order logic, and ontology individuals are used to learn the 

uncertainty of the resulting formulas. Next, we use Markov Logic inference 

capabilities to perform approximate probabilistic reasoning in the resulting model. We 

present several experiments of this approach with different OWL ontologies. 

All the capabilities described in this paper are implemented in Incerto2, an open 

source probabilistic reasoner for the Semantic Web.   

The next sections introduce the concepts of Semantic Web and Markov Logic. 

Section 4 describes our approach to the transformation of OWL into Markov Logic. 

Section 5 presents the experimental work done and its main results. We finalize this 

paper by describing future work and conclusions of our work. 

2 Semantic Web 

In the current web, while it is easy to a human infer the meaning of objects in a web 

page, to a machine this task is not so easy, being only possible to interpret the 

keywords and links of those objects. The Semantic Web [1] tries to fill this 

knowledge gap between human and machines by adding background knowledge to 

the web, allowing machines to infer the real meaning of objects. This background 

knowledge is usually expressed by ontologies [4], i.e., sets of knowledge terms for 

some particular topic, including the vocabulary, semantic interconnections, and rules 

of logic/inference of those terms.  
The most prominent markup language proposed by the W3C to model ontologies in 

the Semantic Web is the Web Ontology Language3 (OWL). OWL provides an 

expressive shared vocabulary to represent knowledge in the Semantic Web. This 

vocabulary allows expressing axioms about classes, properties, and individuals of the 

domain. In this paper, we will focus on OWL24 [5], the new version of OWL 

proposed by the W3C, which subsumes the decidable subsets of the original OWL 

                                                           
2 http://code.google.com/p/incerto/ 
3 http://www.w3.org/2004/OWL/ 
4 http://www.w3.org/TR/owl2-quick-reference/ 
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(OWL-DL and OWL-Lite). 

OWL2 is based on the Description logic SROIQ(D) [5]. Description logics [6]  

are a family of logical languages specially designed to model terminological domains. 

Formulas in Description Logics are composed by two symbols: concepts (i.e., sets of 

individuals) and roles (i.e., relationships between individuals). A relevant feature of 

Description Logics is their separation of knowledge bases in two distinct parts: the 

intensional knowledge in the form of a terminology, called Terminological Box 

(TBox), and the extensional knowledge, called Assertional Box (ABox). The TBox 

provides the vocabulary, in terms of concepts and rules, of the knowledge base. This 

is usually done by defining concepts using the logical equivalence constructor (e.g., ����� � ��	
�� � ����
�). The Abox uses the TBox vocabulary to make 

assertions about individuals (e.g. �����������). 

3 Markov Logic 

Markov Logic [3] combines first-order logic and probabilistic graphical models 

(Markov networks [7]) in the same representation. The main idea behind Markov 

Logic is that, unlike first-order logic, a world that violates a formula is not invalid, but 

only less probable. This is done by attaching weights to first-order logic formulas: the 

higher the weight, the bigger is the difference between a world that satisfies the 

formula and one that does not, other things been equal. These sets of weighted 

formulas are called Markov Logic networks (MLNs). Given a set of constants (i.e., 

individuals) of the domain and an interpretation, the groundings of the formulas in an 

MLN can generate a Markov network by adding a variable for each ground atom, an 

edge if two ground atoms appear in the same formula, and a feature for each grounded 

formula. The probability distribution of the network is defined as 

P�� � �� � 1� ��� ���������
�

���
 , (1) 

where � is the number of formulas in the MLN, ����� is the (binary) number of true 

groundings of �� in the world �, ��  is the weight of ��, and � is a normalizing 

constant. 

There are two relevant tasks of Markov Logic for this work: weight learning and 

inference. 

3.1 Weight Learning 

Given an MLN without weights and a set of example data composed by individuals of 

the domain, weights can be learned generatively by maximizing the pseudo-log-

likelihood [8] of that data. Basically, it is an iterative process where if the model 

predicts that a formula is true less often than it really is in the data, the weight is 

increased; otherwise, it is decreased. The pseudo-log-likelihood of world � given 
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weight � is defined as 

log �%&�� � �� ��log�%��� � �'|
�

�)�����, (2) 

where �' is the truth value of variable ', and �)���� is the truth values of the 

neighbors of '. 
3.2 Inference 

The most interesting inference task in Markov Logic is to find the marginal and 

conditional probabilities of a formula given an MLN and possibly other formulas as 

evidence. Since exact inference can be too difficult in large domains, approximate 

inference algorithms, like those based on randomized sampling (e.g., Markov Chain 

Monte Carlo [7] (MCMC)), are usually used. However, MCMC is not efficient in 

domains where formulas with deterministic or near-deterministic dependencies exist 

(e.g., formulas with infinite weight) because these areas of the search space can be 

very difficult to traverse by simple flipping the value of the non-evidence variables. 

To solve this problem, we can use MC-SAT [9], a combination of MCMC and the 

SampleSAT satisfiability solver [10]. MC-SAT uses slice sampling to help capturing 

the dependencies between variables, allowing jumping from these difficult areas. 

4 Markov Logic for the Semantic Web 

As we previously seen, MLNs are formed by a set of weighted first-order logic 

formulas. If we want to use Markov Logic in the Semantic Web, we have to 

determine where these formulas and weights come from. 

4.1 Formulas 

The Semantic Web language used in this work (OWL2) is based on the Description 

Logic SROIQ(D). One characteristic of Description Logic languages is that they 

follow a model-theoretic semantics [6], and therefore can (in most of the cases) be 

interpreted as formulas in first-order logic. The main idea behind this interpretation is 

that concepts correspond to unary predicates, roles to binary predicates, and 

individuals correspond to constants. In our case, SROIQ(D) can be easily 

interpreted as first order formulas. Some examples of these translations are provided 

(Table 1). 
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Table 1. OWL2 examples of interpretation as first-order logic formulas. A complete 

description of the interpretation can be found on the Incerto website5. 

OWL2 Expression First-order logic formula *+,-
�

./�-0�, -01� 2� 3 -0���� 4 -01��� 5	��
'6'7��	���	68�.�0� 2�, 8, 9 3 .�0��, 8� : .�0�8, 9� 4 .�0��, 9� -
�

�

�	6'���-0, �� -0��� 
4.2 Weights 

The most obvious way to acquire the uncertainty from an ontology is to delegate this 

task to the ontology creators. This is the approach used by other works [2]. However, 

creating and maintaining large uncertainty-annotated ontologies can be a cumbersome 

and difficult task, invalidating all the gains that could arise from the annotation. This 

fact raises the need for developing mechanisms to learn this uncertainty 

automatically. This can be useful not only to help users when creating uncertain 

ontologies, but also to gain access to the vast number of non-annotated ontologies 

already available. 

In this paper, we explore the use of the weight learning capabilities of Markov 

Logic to learn uncertainty information. As previously seen, in Markov Logic, 

formulas’ weights can be learned generatively through example data. This example 

data comprises individuals of the domain and their relations. In the case of OWL2, 

this corresponds to the ABox of the ontology. Therefore, the ABox can be interpreted 

as ground atoms, and weights can be learned with that information. 

5 Experimental Analysis 

In this section, we present our experiences on using Markov Logic to learn and reason 

about uncertainty in OWL2 ontologies. The main objective of these experiments is to 

show the feasibility of our approach in real-world domains. All the experiences were 

made with Incerto, using Alchemy6 [11] as the Markov Logic engine. All the 

ontologies and results of the experiences can be also found on the Incerto website7.  

5.1 The Financial Experiment 

Evaluation Procedure and Data Set. Uncertainty reasoning is very important in 

discovering hidden knowledge in risk assessment domains. In this experiment, we 

will use a financial ontology, GoldDLP8, to assess the risk of certain financial 

operations. In this ontology, there is information about a bank that offers services like 

                                                           
5 http://code.google.com/p/incerto/wiki/OWL2FOL 
6 http://alchemy.cs.washington.edu/ 
7 http://code.google.com/p/incerto/wiki/EPIA2009Experimentation 
8 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm 
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loans and credit cards to private persons. The ontology contains 116 class/property 

axioms and 297 individuals, mainly distributed between accounts, clients, credit 

cards, and loans. One of the most interesting tasks in this domain is to determine if a 

given loan is a problematic loan. There is an OWL class responsible for that 

information, named ProblemLoan, and some axioms about that class (e.g., 

ProblemLoan is the complement of OkLoan). The main task in this experiment is to 

determine each loan’s probability of being a ProblemLoan. 

Experimental Results. Using generative learning and MC-SAT, we found that nine 

loans have a probability >90% of satisfying the conditions necessary for being a 

ProblemLoan. If we compare the results with a non-probabilistic reasoner, like Pellet9 

[12], these are the same nine individuals identified deterministically by it. However, 

our approach returns some more interesting results that were not identified by Pellet. 

All the other loans have a probability between 35-39% of satisfying the conditions of 

ProblemLoan. This information is valuable because, roughly speaking, it 

demonstrates that any loan has an associated probability of being a problematic loan. 

This kind of results cannot be achieved using non-probabilistic reasoning, and 

therefore demonstrates the necessity of probabilistic reasoning to have a more 

profound understanding about the domain. However, if we use an existent Semantic 

Web probabilistic reasoner (e.g., Pronto10 [13]), its results are the same of a non-

probabilistic one, since the ontology does not contain any information about the 

uncertainty of its axioms. 

5.2 The Social Network Experiment 

One of the most used Semantic Web vocabularies is the Friend of a Friend11 (FOAF) 

vocabulary. This vocabulary allows describing social network data (i.e., persons and 

their relations) in OWL, with special incentive in linking users from different social 

networks. There are several web-based social networks that provide information about 

their users in FOAF (see Mindswap12 for a comprehensive list), and some projects are 

already exploiting that information (e.g., Google Social Graph API13).  

The objective of this experiment is to use Markov Logic to explore the relational 

structure of FOAF networks. As data set, we choose Advogato14, a social network of 

free software developers. Advogato provides three interesting FOAF properties to our 

analysis: foaf:knows(x,y), meaning that user x knows user y; foaf:currentProject(x,y), 

meaning that user x is currently working in project y; and foaf:member(x,y), meaning 

that user x is member of the group y. After gathering and processing all the available 

FOAF profiles, we had a total of 6688 individuals, representing 4198 users, 2487 

projects, and 3 groups. Based on the Link Mining literature [14][15], we identified 

                                                           
9 http://pellet.owldl.com/ 
10 http://pellet.owldl.com/pronto 
11 http://www.foaf-project.org/ 
12 http://trust.mindswap.org 
13 http://code.google.com/apis/socialgraph/ 
14 http://advogato.org/ 
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three interesting tasks to our experiment: link prediction, link-based classification, 

and link-based cluster analysis. 

5.2.1 Link Prediction 

Link prediction [14] is the problem of predicting the existence of a link between two 

objects based on the relations of the object with other objects. In our domain, we are 

particularly interested in predicting the acquaintance between users, i.e., the 

foaf:knows property. For this purpose, based on our common sense about the domain, 

we defined three simple first-order logic rules to perform this task: 

Table 2. Link prediction rules. 

Weight Formula 

0.09 ;���
��, 8� : ;���
�8, 9� 4 ;���
��, 9� 
2.70 ;���
��, 8� < ;���
�8, �� 
1.11 =+		��6�	�>�=6��, 9� : =+		��6�	�>�=6�8, 9� 4 ;���
��, 8� 

The first two rules define knows as a transitive and symmetric property, 

respectively, while the last rule states that if two persons work on the same project, 

they probably know each other. Weights were learned generatively with all the 

individuals available. To better describe the results of the link prediction, we 

developed a simple artificial example composed by 9 users and 3 projects. Next, using 

MC-SAT, we queried for the conditional probabilities of the foaf:knows property for 

all those users. A graphical representation of the example, accompanied by a table 

with the results, is provided. 

Fig. 1. Graphical representation of the artificial example. Users are represented by circles (A-I) 

and projects by squares (P1-P3). Black directed edges represent the foaf:knows relation, while 

gray undirected edges represent the foaf:currentProject relation. 
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Table 3. foaf:knows(x,y) results of the previous example. Columns represent the x, lines the y 

(e.g., P(foaf:knows(A,G)) = 0.90). 

 A B C D E F G H I 

A 0.83 0.97 0.95 0.93 0.48 0.50 0.91 0.82 0.47 

B 1.00 0.97 0.48 0.50 0.44 0.43 1.00 0.98 0.48 

C 1.00 0.49 0.93 1.00 0.97 1.00 0.44 0.46 0.47 

D 1.00 0.50 0.98 0.84 0.47 0.48 0.50 0.50 0.92 

E 0.46 0.44 1.00 0.48 0.86 0.86 0.45 0.43 0.41 

F 0.48 0.43 1.00 0.48 0.85 0.86 0.43 0.43 0.41 

G 0.90 1.00 0.46 0.49 0.45 0.43 0.84 0.89 0.42 

H 0.83 1.00 0.49 0.51 0.43 0.45 0.89 0.83 0.45 

I 0.49 0.45 0.46 1.00 0.40 0.42 0.42 0.44 0.59 

Some interesting results can be seen in this example: 

─ knows(A,G) is greater than knows(A,F), even if both users are at the same 

distance from A. The only difference between them is that G works in the same 

project than A, getting a bigger probability; 

─ knows(D,A), knows(C,A), and knows(C,D) have big probabilities, mostly 

because the symmetry of knows. However, the probability of knows(C,D) is the 

greatest, since both users also work in the same project, P3; 

─ Since H and F doesn’t share any direct connection, the probability of 

knows(H,F) is low, but not null. 

5.2.2 Link-based Classification 

The main task in link-based classification [15] is to predict the category of an object 

based on the relations of that object with other objects. In our domain, there are three 

groups of users related to the experience of the user in the community: Apprentice, 

Journeyer, and Master. These groups are expressed through the foaf:member 

property. The objective of this experiment is to predict each user’s group based on 

their connections to other users. For this purpose, we defined another simple rule that 

uses the relationship between users expressed on the three previous rules: 

Table 4. Link-based classification rule. 

Weight Formula 

0.19 ;���
��, 8� : ���,�	��, 9� 4 ���,�	�8, 9� 
This rule states that the group of a user is influenced by the groups of the users that 

he knows. The weight of the rule was learned generatively in conjunction with the 

three rules of the previous experiment (their weights remained very similar). Next, we 

extracted a random sub-network composed by 172 users (11 Apprentices, 55 

Journeyers, 93 Masters) and 54 projects and randomly removed the group information 

to 27% of the users (i.e., 47 users). With the rules of Table 2 and Table 4 and the sub-
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network individuals, we used MC-SAT to predict the membership of the missing 

group users. The results can be seen in the next table. 

Table 5. Link-based classification results. Between brackets is the number of individuals of the 

group. 

Group Specificity Precision Recall F-measure 

Apprentice (4) 0.98 0 0 0 

Journeyer (15) 0.97 0.83 0.33 0.48 

Master (28) 0.37 0.7 1 0.82 

Weighted Avg 0.61 0.68 0.70 0.64 

Good results can be achieved on predicting user’s groups taking only in account 

the relational structure of the network. The bad results on predicting the Apprentice 

group are probably derived from the small number of elements of that group in the 

test network. The results could be probably improved if other non-relational 

information about users was provided (e.g., nationality, age, sex). 

5.2.3 Link-based cluster analysis 

In the last experiment, we had seen how to classify users in a set of predefined 

groups. However, in some cases, the information about groups is not available and we 

still need to segment the users. The goal of link-based cluster analysis [15] is to 

cluster objects into groups that show similar relational characteristics. In our domain, 

it is interesting to cluster users given their acquaintances with other users. For this 

task, we can use the three rules presented in the link prediction task, since they can 

gave us a relational matrix of the foaf:knows property for all the users (i.e., the 

probability of all the users know each other). Using the same sub-network of the last 

task (172 users and 54 projects), we used MC-SAT with the previously referred rules 

to predict the foaf:knows property for all the 172 users. With those results, we applied 

two distinct clustering techniques: the general purpose k-means clustering algorithm 

[16], and the Markov Cluster Algorithm15 (MCA) [17], an unsupervised graph 

clustering algorithm. 

After some initial experimentation, we defined the number of desired clusters in 

the k-means algorithm to 3, and the inflation property of the MCA to 1.6 (which also 

produces 3 clusters). Since the initialization of cluster centroids in k-means is random, 

the algorithm was run 100 times and the best solution is the one presented. Table 6 

provides the cluster sizes and the number of shared members between solutions. 

Even if the underlying techniques are conceptually distinct, both solutions provide 

similar clusters, both in size and composition. The biggest clusters from both 

solutions (C1 and K1) are very similar, as well the second biggest clusters (C2 and 

K2). 

 

 

                                                           
15 http://micans.org/mcl/ 
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Table 6. Link-based clustering analysis results. The table represents the number of shared 

members between the clusters of the two algorithms (e.g., cluster C2 and K2 share 25 

individuals). Between brackets is the size of each cluster. 

 K-means 

K1 (114) K2 (47) K3 (11) 

MCA 

C1 (135) 102 22 11 

C2 (30) 5 25 0 

C3 (7) 7 0 0 

6 Future Work 

During our experimentations, we had some problems in finding interesting ontologies 

with a sufficient number of individuals that allowed learning the weights with some 

confidence in the results. This is mainly due to the fact that a large number of 

Semantic Web ontologies currently available were made to model pure terminological 

domains, with the main objective of answer questions about concepts and not 

individuals. In these ontologies, we have to find other ways of gathering information 

to learn the uncertainty of the axioms. We identified four main approaches to tackle 

this problem: 

• Learn individuals. This is the task studied in the field of ontology population [18]. 

By using previously trained classifiers or general syntactic rules, we can extract 

information about ontology individuals and their relations from textual corpus. 

Other way of populating ontologies is through the analysis of structured data, like 

relational databases or other ontologies. In this case, mappings [19] must be made 

between the structured data objects and the entities of the ontology. 

• Learn the uncertainties directly from textual corpus. This is done by analyzing 

textual corpus for patterns like “70% of A is B” or “Most of the A’s are B’s”. This 

can be done again by using previously trained classifiers or general syntactic rules. 

• Use the structure of the ontology. The structure of the ontology can provide 

interesting information about the uncertainty of its axioms. Some other works [20] 

[21] already explored similar approaches in ontologies, however with distinct 

objectives than ours. The field of network analysis [22] can provide us with some 

interesting concepts that can be potentially transferred to our specific case. 

• Collective learning of weights. The idea is to learn the weights collectively from 

multiple ontologies about the same domain. This task can be achieved by exploring 

techniques from collective learning fields, like relational reinforcement learning 

[23]. 
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7 Conclusions 

In this paper, we have described an approach to the use of uncertainty reasoning in the 

Semantic Web using Markov Logic. We have shown how it can be used in practice to 

perform reasoning with OWL2 ontologies. Our approach enables the reasoning with 

uncertainty in the Semantic Web with a scalability factor that current tools do not 

provide. The presented work also addresses an important research question: how to 

derive uncertainty information from an ontology. The approach for producing this 

information is based on Markov Logic abilities to represent the world uncertainty. We 

think that our work constitutes a step forward in the creation of robust reasoning 

mechanisms for the Semantic Web. 
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