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Abstract—We propose a practical methodology to protect a user's
private data, when he wishes to publicly release data that isorrelated
with his private data, in the hope of getting some utility. Ou approach
relies on a general statistical inference framework that cptures the
privacy threat under inference attacks, given utility congraints. Under
this framework, data is distorted before it is released, acsrding to a
privacy-preserving probabilistic mapping. This mapping is obtained by
solving a convex optimization problem, which minimizes indrmation
leakage under a distortion constraint. We address a practial challenge
encountered when applying this theoretical framework to rel world data:
the optimization may become untractable and face scalabtl issues when
data assumes values in large size alphabets, or is high dinganal. Our
work makes two major contributions. We first reduce the optimization
size by introducing a quantization step, and show how to gemate privacy
mappings under quantization. Second, we evaluate our metloon a
dataset showing correlations between political views and W' viewing
habits, and demonstrate that good privacy properties can beachieved
with limited distortion so as not to undermine the original purpose of
the publicly released data, e.g. recommendations.

. INTRODUCTION

One of the central problems of managing privacy in the Irgelies
in the simultaneous management of both public and privata. dia
order to receive services such as recommendations, usensvfling

Our second contribution is a preliminary characterizatadrthe
impact and performance of our method, on a new dataset. In [1]
the authors only proposed and reasoned about their frarketudr
did not evaluate it. To the best of our knowledge, our papehés
first evaluation of this method. We designed and ran a sureey t
collect data that contains users TV show ratings and thditiqz
affiliation. In this case study, we consider TV show opini@assdata
to be released and a user’s political affiliation to be keptape.
The framework in [1] allows for different kinds of data digions
such as removing an element of the user’s public data (cetkstdre-
distortions), altering the contents of some elements in a public profile
(called exchange-distortions), or other forms of distortion.

Our evaluations demonstrate multiple things. First, wentjfiathe
threat in our dataset and show that an adversary can inféicpbl
affiliation with roughly 71% accuracy. Second, we illuserahe
effects of quantization and distortion on privacy and shbat twe
can steadily reduce the threat with increasing distortive. show
that we can achieve perfect privacy with a reasonable amofint
additional distortion. Third, we show that using limitedstirtion,
our method can render an example Democrat/Republicanif@ass
no better than an uninformed random guess. Finally, we ainau
preliminary experiment to examine the impact of our distorton

releasesome data about themselves, such as their movie watchirgatrix factorization, commonly used in recommender systeamd

history. However users also have other data they consideat@r
such as income level, political affiliation, or medical ciiwhs.

show that additional errors in recommendation are not Sagmit.
For more details, the reader is referred to our researchrirépjo

In this work, we focus on a method in which a user can release

her public data, but is able to prevent against inferenceackst
that may learn her private data from the public informati@ur
solution consists of a privacy mapping, which informs a usew
to distort her public data, before releasing it, such thatnfierence
attacks can successfully learn her private data. At the Same
the distortion should be bounded so that the original ser{&g.,
recommendations) can continue to be useful.

We adopt the general privacy framework in [1] that considbes
privacy threat incurred by a user when a passive adversgmats to
infer the user’s private information from the user’s pulilieleased)
data.
of mutual information, which leads to an optimization fofation
similar to rate-distortion theory. This formulation, aitbgeneral and
theoretically sound, faces a key challenge of scalabilitigmapplied
to real world datasets. The scalability issue occurs whensike of
the underlying alphabet of the user data is very large.

In this paper, we focus on this challenge. Our first contrdyut
is to propose a quantization approach to limit the dimeradinof
the problem, and to characterize the additional distortiroduced
by quantization. We quantize the original data by clusteiinand
then distort the data in the space defined by the clusterspfivecy
mapping is computed using a convex solver that minimizegapyi
leakage subject to a distortion constraint. Our scheme mBpoe
tationally efficient - we reduce the number of optimized abhes
from being quadratic in the size of the underlying featugghabet
to being quadratic in the number of clusters, and thus make
optimization independent of the number of observable damaptes.
For some real world datasets, such as those common in ma¥i€\an
recommender systems, this can lead to orders of magnitddetien
in dimensionality. This quantization step provides a fundatal
extension to the original method in [1].

Il. PROBLEM STATEMENT

Threat Model: We consider the setting described in [1], where a
user has two types of data: some data that he would like toinrema
private, e.g. his income level, his political views, and sodata that

he is willing to release publicly and from which he will dezigome
utility, e.g. the release of his media preferences to a semprovider
would allow the user to receive content recommendationsd&viote
by A € A the vector of personal attributes that the user wants to keep
private, and byB € B the vector of data he is willing to make public,
where.A and B are the sets from whicld and B can assume values.

[1] argues that the privacy loss can be measured instermWe assume that the user private attributésare linked to his

dataB by the joint probability distributiom a, 5. Thus, an adversary
who would observeB could infer some information about. To
reduce this inference threat, instead of releagiighe user releases

a distorted version of B, denotedB € B3, generated according to a
conditional probabilistic mappingB‘B, called theprivacy-preserving
mapping. Note that the set3 may differ from B. The privacy
mappinng‘B should be designed in a way that renders any statistical

inference ofA based on the ob§ervation &f harder, yet, preserves
some utility to the released dafa, by limiting the distortion caused
by the mapping. This can be modeled by a constraint 0 on the

average distortiort'; 5[d(B, B)] < A, for some distortion metric

d:Bx B — R*. It should be noted that any distortion metric can
be used, such as the Hamming (re&p. distance if B and B are
thinary (resp. real) vectors, or even more complex metricdatiog
the variation in utility, e.g. recommendation quality, thauser would
derive from the release dB instead ofB.

We assume the following standard statistical inferenogathmodel
[1]: we model the average statistical inference gdid’ of the
adversary after he observés i.e. how much an adversary can reduce



his expected loss for a given loss function 6n after observing Algorithm 1 Quantized privacy preserving mapping.
B. . This statistical gain represents the gain in terms ofrerfee Input: prior pa,s

of the private attributeA. The goal of the privacy mapping is to

minimjze thi§ gain. Note that this general framgwork domume qa.c(a,c) < 32, .paB(a,b) V(a,c) € (AC)

a particular inference algorithm. Moreover, using the llegs, it can Solve the convex optimization problem:
be shown [1] thaNC' = I(A; B) (for a justification of the relevance

and generality of the log-loss c.f. [1, Section IV.A]). Henche minimize J(ga,c,pe)c) st Ep, . [d(O, C‘)} <A (2
privacy leakage is captured by the mutual information betwthe Peje '
private attributesd and the publicly released dafa. In the case of Pejc € Simplex,

perfect privacy(I(A;B) = 0), the privacy mappingoB‘B renders
the released dat® statistically independent from the private data
It should be mentioned that, although we model the privacgat
using the average cost gain in this paper, [1] also proposedrst-
case model where the privacy threat is measured in term&ahtst
informative output, i.e. the output that gives the largeshgn cost.

Note that in the case of perfect privayC' = 0, the average and the giep maps the symbols in alphali®to |C| representative examples in

worst-case threqt model are equivalent. Thus conclusioeasdon 5 gmaller alphabat. Second, we learn a privacy preserving mapping
distortion to achieve perfect privacy under the averageathmodel geic ON the new alphabet, whet® = C. Third, the symbols in3

also hold for the worst-case model. . q h i idsased he | q
Privacy-Accuracy Framework: The mutual information/ (4; B) is '€ Mappe to the representative examplesased on the learne
mappingge . Our approach is summarized in Alg. 1.

a function of the joint distributio ~, Which in turn depends on ( . .
J Pa i P Our solution has several notable properties. To begin vilik,

both the prior distributio 4, s and_the privacy mapping, , since privacy-preserving mapping, - is obtained for the reduced alphabet
A — B — B form a Markov chain. To stress these dependencies, s we need to solve the convex optimization (1) for only
we will denote |C||C| variables. In practice|C| < |B| and this results in major
AC =1(A;B) = J(PAB,Dgp)- computational savings. Second, quantization and prigaegerving
optimization are done separately. Therefore, any quardizanethod
Similarly, the average distortioR,, ;[d(B, B)] is a function of the can be easily combined with our approach. In particular, w&e ¢
joint distributionp; 5, which in turn depends both opa 5, through ~minimize the quantization error in the quantization stepd shen
the marginalp, and on pp, ;. Consequently, given a prigra, 5 OUr privacy mechanism guarantees the optimal mapping imster
linking the private attributest and the dataB, the privacy mapping Of add_ltlonal _dlstortlon. Finally, quantization obw_o_ysyleld_s a
P p Minimizing the privacy leakage subject to a distortion ¢aaiat ~ Suboptimal privacy-accuracy tradeoff, since the quatitezstep is an

is obtained as the solution to the optimization problem additional source of distortion. However, in Theorem 1, wertify
how quantization affects the privacy-accuracy tradeanft] show that

[d(B, B)] <A (1) the levels of privacy that can be achieved are not affectetictime

Pep(E1b) = apc(@| (b)) V(b,é) e (B,C)

Output: mappingpe,

minimize J(pa,s,ppp) st. E

P55 "o at the expense of a bounded amount of distortion.
Ppp € Simplex, We now analyze Alg. 1. Problem (2) solves a variant of problem
- ) (1), where alphabet8 and B are substituted for alphabetsandC,
where Simplex denotes the probability simplex}{ p(z) = and the joint probability distribution oved andC is defined as
1, p(x) > 0 Vz). It was shown in [1] that this problem is convex.
Note that it is similar to a modified rate distortion problem. qa.c(a,c) =3, . pap(ab), (3)

Practical Challenge in the Presence of Large Data: When
applying the aforementioned privacy-accuracy framewarklarge
data, we encounter a practical challenge of scalabilitgigréng the
privacy mapping requires characterizing the valuepgf (b[b) for
all possible pairgb, 13) € B x B, i.e. solving the convex optimization
problem over|B||B| variables. When3 = B, and the size of the pep(€lb) = qac(¢ | ¥(b)), 4
alphabet|B| is large, solving the optimization ove3|® variables
may become intractable. In Section Ill, we propose a mettasbdh
on quantization to reduce the number of optimization vdembWe
show that the reduction in complexity does not affect the/gmy
levels that can be achieved, but comes at the expense of @dimiTheorem 1. Let g4 be a solution to problem (2) and Pés be the

whereb ~ ¢ means that the symbaélis in the cluster represented by
centerc. The above equation aggregates the probability mass of all
symbols in the cluster in its center. The symbolsSirare mapped to

C according to

wherey : B — C'is a function that maps a symbol Bito a cluster
center inC. Note that the probability distributions that are asseciat
with optimization (2) are marked hy. Now we state our main claim.

amount of additional distortion, that we characterize. corresponding mapping from B (Equation 4). Moreover, let C be an
alphabet such that max min d(b,c¢) < r. Then the privacy leakage
I1l. PRIVACY FOR LARGE-SCALE DATA beB ceC

J(pa.B,PA of the ing p~ , iS equal to the value of the
In real-world datasets, the alphaligtis often large. In particular, ot()jzl)eétijf/epfﬂ‘r]it)ion of (Z;T:]ap PING Pojp 1S &4

the number of symbols 8 may bef(n), linear in the number of

samplesn in the dataset. Suppose that= B. Then the number of J(pa.B,pép) = J(qa.0,960)
optimization variablegaB‘B(b | b) in problem ((1)) isf(n?). Note
that the distortion constraint is Iinearji];‘B(lA) | b) but the objective A
function is neither linear nor quadratic, so the optimizatproblem Ep, - [d(B, C’)} <A+

(1) cannot be solved using fast linear or quadratic prograagm '

solvers. In general, the problem is hard to solve when the efz  Theorem 1 (proof in [2]) states that the information leakaféhe
alphabet exceeds a few hundreds symbols. To address this issue, Weppingp, 5 is the same as that of the optimized mappipg.. So
show how to solve our problem approximately by optimizingiée we optimize the quantity of interest(pa, s, ps5) in a time which
variables. Our solution comprises three steps. First, atquaion is independent of the size of the input alphageﬂ'he distortion rate

and itstotal distortion rateis no more than r larger than thetarget A:
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Fig. 1: Box plots of ratings for 10 TV showsFig. 2: Privacy-accuracy tradeoff after quarkig. 3: ROC curve of a logistic regression of
by Democrats (D) and Republicans (R) tization on binarized ratings, and full ratinggolitical views based on TV show ratings

(inset)
increases due to quantization, linearly with the maximustadicer V. RESULTS
between any example and its closest representative examplé).  Consider the setting where a user wishes to release his TW sho
The maximum distance can be minimized by existing clusteringratingsk € {0, 1,...,5}* (or B € {0,1}%°), in the hope of getting

methods, such as onlinecenter clustering [3]. It can be shown bygood recommendations, but is concerned about them leakog- i
a simple ball backing argument that this method clustera dath mation about his political affiliationt € {Democrat, Republican}.

thatr < 8/|C|*5, whered is the intrinsic dimension of data.

IV. DATASET

To evaluate our framework, we collected a datdestitics-and-TV,
on political views and TV preferences. The collection ofsuata
was motivated by large scale surveys [4], [5], which illaged that
correlations exist between TV show ratings and politicalws.

Data Collection: We designed a survey that users take voluntaril

Users were first asked to provide demographic informati@nder,
age group, state they live in) as well as their political \def@emo-
crat, Republican). Then users were asked to complete arsezj0é 6
panels, each panel presenting the user with 6-8 TV shows eftaic
genre, namely Sitcoms, Reality Shows, TV series, Talk Shblews,
and Sports, for a total of 50 TV shows. Users were asked toordye

Note that although we focus on the case where the privateisiaa
single variable representing political affiliation, thévacy-accuracy
framework [1] can handle protecting a set of private vagable.g.
we could protect any subset of a user’s three attributes dageder,
politics]. The rating vectorR (reps. B) lives in a large alphabet of
size 6% (resp.2°°) over 6'°° variables would be untractable, and
justifies resorting to quantization. Note that the numbesahples

%,5 small relative to the alphabet size, and the pparr estimated
rom the dataset may be mismatched, issue addressed in [2].
Privacy threat: The threat comes from the underlying existence of
TV shows that are highly correlated with political affiliati, €.9.The
Daily Show is predominantly liked by Democrats, whifox News

is preferred by Republicans. Fig. 1 shows boxplots of ratifog 12
shows—two shows from each genre in the dataset— by Democrats

those TV shows that they watched on a scale from 1 to 5— the us@id Republicans. Those shows for which there is little ayeih

star rating system. After providing their ratings, usergevghown,
for each genre, how their ratings compared with the averatiegs
given by Democrats and Republicans. In our privacy policgers
were informed that private information that can be used tmtidy
an individual, e.g. cookies, IP addresses, was not stored.

the opinions of Republicans and Democrats clearly dematestrigh
correlation between political affiliation and opinion ofode shows.
Such shows have high discriminative power that inferengerdhms
can exploit. There exists a broad variety of shows in termtheir
discriminative power - some are very much so, while otherslbéix

We ran our survey in two phases. In phase 1 (October 2018W correlation. U;ers who rate highly shows suchTae O'Reilly
we ran it on Mechanical Turk requesting only US-based warker-@ctor, or The Daily Show, may be facing a stronger threat than

In total, we obtained 854 surveys, with 518 Democrats and 340

Republicans. In phase 2 (November 2012), we launched ouepon
the public web at www.PoliticsandMedia.org. We drove tecafti the
survey website by running advertising campaigns on MyLit@®

se who only watch and rate shows with little discrimingtpower.
Broadly speaking, across our 50 shows, we found that roughéy
third of them have strong correlation with political afftian.

In order to understand the threat inherent in this dataset, w

and Google AdWords, shortly before the U.S. 2012 presigentduantify the potential privacy leakage using mutual infation

election. From this, we obtained another 364 completedeysrwvith
226 Democrats and 138 republicans.

Dataset The dataset contains entries for 1218 users, broken i
744 Democrats, and 474 Republicans. For each user, theetlat

entry is a vector[age, gender, state, politics, 71, . . ....rs0] Where
r; € {0,1,...,5} is the user’s star rating for show if the user

rated the show, and 0 otherwise. We consider two versionfef

rating vector: the 5-star rating vectdt € {0,1,...,5}°°, and the
binarized rating vectoB € {0, 1}°°. The binarized rating; of show
1 is obtained by setting; = 1 if the original ratingr; >= 4 clearly
indicating that the user likes the show, ad= 0 otherwise.

TABLE I: RMSEs of |r — 7| and |r — 7|

Set 1 2 3 4 5
RMSE1 1.2506 1.1820 1.2461 1.2155 1.2101
RMSE2 1.6972 1.6763 1.6215 1.7248 1.8036

I(A; R). To provide an illustrative example, we thus consider a
reduced set of our data for which we can compute the mutual

e binarized version of the rating vector with ratings {i, 1}°.

or this case, we observe that the mutual information betvwhe
observed features and the political orientation is alrestdy191 bits.

n adversary, with this information on hand (the 5 tuple afarized
ratings), could use a maximum a posteriori (MAP) detectal gmess
the political affiliation of somebody with an accuracy@f%. Hence,
the privacy threat is real. Note that because mutual infionds a
non-decreasing function, as we add additional shows, tieatleither
stays the same or increases.
Privacy-accuracy trade-off We now apply our quantization ap-
proach and investigate its impact on the privacy-distarti@deoff.
We first consider the full 50 show dataset with the binarizexdion of
the ratings. Alg. 1 first quantizes the data using a K-meamsteting
algorithm with a Hamming distance metric and K=25 clusténsn

r{gormation. We consider the top 5 most seen TV shows, and use



we apply the convex optimization on the quantized pointse Tthigh precision the input database from a differentiallygte query

resulting trade-off curve is depicted in Fig. 2. The curveveh

[1]. More general and flexible frameworks similar to diffetial

that the quantization step alone introduces an average Hamnmprivacy exist such as the Pufferfish framework [9], which sloet

distortion of aboutl2% (leftmost point on x-axis) per rating, @1
over all 50 shows, and results in a mutual informatior0af’9 on
the representative points (cluster centers). As this Ik lEgh, we
are motivated to apply further distortion. Fig. 2 shows thaing
the optimal privacy preserving scheme resulting from crnopti-
mization, we can steadily decrease the privacy threat withesing
distortion. Not only is our privacy-distortion curve prafyebehaved,
but small increases in Hamming distance bring the privaekdge
down quickly. Moreover, we can achieve perfect privady= 0) at
the cost of an additionad% in average Hamming distortion (beyond
the clustering distortion). Perfect privacy is achievedaatoverall
Hamming Distortion of less than 7 out of 50; put alternatiyeerfect
privacy is obtainable if on average we change just less th84 af
a user’s rating data before it is released. In Fi@. we consider the
same tradeoff with the actual 5-star ratings, and k-meamstagiing
with L2 distance. The mutual information after quantizatis 0.182.
Perfect privacy is achieved with a total distortion of 0.8 pEing—

0.75 of which are due to quantization. The actual ratings require

slightly higher distortion to reach perfect privacy tharthwbinarized
ratings, since their range [8, 5] instead of{0, 1}.

take into account distortion of the data, and requires kngwhe
adversary’s belief of the input distribution.

Another existing trend in privacy research applies infdiora
theoretic tools to quantify and design privacy-preservimechanisms
[1], [10]-[14]. Information theory provides a natural framork to
measure the amount of private information that an adversary
learn by observing a user’s public data. This was first note&éed
[10]. One line of work, adopted in [11], [12], provides asyuotx
and fundamental limits on rate-distortion-equivocatiegions as the
number of data samples grows arbitrarily. Non-asymptqijreaches
to information-theoretic privacy were discussed, for egham in
[1], [13], [14]. More recently, [1] introduced a general fimawork
for privacy against statistical inference that takes intcoant dis-
tortion constraints for the user’'s public data. Informattibeoretic
approaches have also been used to quantify the informatanifi
security systems (e.g. [15] and references).

VIlI. CONCLUSION

In this paper we address a key scalability challenge ths¢afivhen
applying an information theoretic framework to a privacylgem in

Inference defeat The previous plots show the reduction in privacyVhich a user wants to release her public data while simubiaslg
leakage achieved by our distortion. Another key perforreametric Protecting her private data from inference threats. Thénupation

is the reduction in accuracy of a Democrat/Republican iflass
when distorted user ratings are used instead of actual dfes.
consider the example of a logistic regression classifier nif@ri
political affiliation ( [6] used logistic regression to imfegender
from movie ratings). We used 10-fold cross validation on fulr
dataset, considered both cases of actual and binarizedjsatind a
distortion that achieves perfect priva€y= 0, at which any inference
algorithm cannot perform better than an uninformed randomsg.
In Fig. 3 we plot the false positive rate (number Democratsefg
classified as Republicans), against the true positive rateifer of
Republicans correctly classified). With a distortion boufsdd= 1,
we can significantly reduce the classifier's performancenbtireach
perfect privacy; however witlh = 2 the classifier is reduced to an
uninformed random classifier. This demonstrates that oproggh
can successfully render inference attempts unsuccegshallly, note
that logistic regression performs almost equally well wiiharized
and actual ratings, which means merely perturbing existitiogs is
not enough, thus we must add or delete ratings to protecagyiv
Recommendation quality As a final performance metric, we con-
sider the impact of our distortion on recommendations traild/be
produced by a recommender system based on matrix faciorizat
In Table I, RMSE1 captures the root mean squared error ingiest
ratings (compared to the true ratings) using unperturbealdavhile
RMSE2 captures the errors when ratings are predicted usiag

distorted data produced by our algorithm. The results were produce

using 5-fold cross validation and randomly removihg% of the
ratings in each test set. We can see that any additionalsemcfrV
recommendations, due to distorting ratings, is small. Pphédiminary
result on the impact on a recommendation system is encaowaget
requires further extensive testing.

VI. RELATED WORK

The prevalent notion of privacy is differential privacy [1B]: a
query over a database is differentially private if smalliagons in
the entries of the database do not significantly change ttmubdis-
tribution of the query. Differential privacy does not taked account
the distribution of the database entries, which makes thautation
mathematically tractable and simplifies its implementatiand it is
robust against arbitrary side information from the attackimwever,
differential privacy does not quantify the amount of infation that
is leaked by the system. Furthermore, for certain inputibigions on
the database entries, an adversary might able to infer wiiitrarily

formulation cannot scale when the underlying alphabet efuber’s
public data is large. Our main contribution is to propose daho,
based upon quantization, that drastically reduces the rdifoeality
of the optimization. Rendering the optimization computadilly
efficient is a key step towards making our framework prattidée
evaluated our approach on a novel dataset and demonsthetieth t
the use case of a recommendation system, a high level ofcgroan
be achieved without a significant impact on the recommeonsti
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