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Abstract 

The Semantic Web envisions a world where agents share and transfer structured 

knowledge in an open and semi-automatic way. In most of the cases, this knowledge 

is characterized by uncertainty. However, Semantic Web languages do not provide 

any means of dealing with this uncertainty. They are mainly based on crisp logic, 

unable of dealing with partial and incomplete knowledge. Reasoning in the Semantic 

Web resigns to a deterministic process of verifying if statements are true or false.  

In the last years, some efforts have been made in representing and reasoning with 

uncertainty in the Semantic Web. These works are mainly focused on how to extend 

the logics behind Semantic Web languages to the probabilistic/possibilistic/fuzzy 

logics, or on how to combine these languages with probabilistic formalisms like 

Bayesian Networks. In all of these approaches, this is achieved by annotating the 

ontologies with some kind of uncertainty information about its axioms, using this 

information to perform uncertainty reasoning. Nevertheless, several questions arise: 

how can reasoning be done efficiently with this uncertainty information? Where to 

get this uncertainty information? 

In this thesis, we present solutions for both questions. The solution for the first 

question is Markov logic, a new promising approach to reasoning with uncertainty. In 

this type of logic, there is no right and wrong world; there are multiple worlds with 

different degrees of probability. This is done by combining logic and probability in 

the same representation, and then using efficient learning and inference algorithms. 

For the second question, several solutions were developed:  

• If the ontologies are annotated with some kind of uncertainty information, 

like probabilities, Markov logic can be used to reasoning about this 

information; 

• If the ontology contains individuals, those individuals can be used to 

automatically learn the uncertainty of the ontology; 

• If the ontology does not comprise uncertainty information or individuals, 

both resources can be automatically learned by analyzing textual resources 

and web search engines. 

We developed a system, Incerto, which explores the capabilities of Markov logic 

for the Semantic Web. This system was applied in several interesting tasks, like 

reasoning about automatically learned ontologies and social networks analysis. 

The main contributions of this thesis are: 

• The application of Markov logic for learning and reasoning about uncertainty 

in the Semantic Web;  

• The development of several techniques for learning automatically the 

uncertainty of ontologies;  
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• The development of a new technique to parameterize Markov logic networks 

with probabilities;  

• The development of a new technique to learn the probability of ontology 

axioms by using web search engines;  

• The development of Incerto, and its application to several Semantic Web 

domains. 
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1. Introduction 

The Semantic Web (T. Berners-Lee, J. Hendler, and Lassila 2001) envisions a world 

where agents share and transfer structured knowledge in an open and semi-

automatic way. This knowledge, in most of the cases, is characterized by uncertainty 

(Lindley 2006), i.e., there is a lack of certainty in assigning a true/false value to a 

certain knowledge statement. However, the Semantic Web does not provide any 

means of dealing with knowledge uncertainty. Its languages, like RDF and OWL, are 

mainly based on crisp logic, being incapacitated of dealing with partial and 

incomplete knowledge. Reasoning in the Semantic Web resigns to a deterministic 

process of verifying if statements are true or false.    

One field that has been trying to tackle the problem of knowledge uncertainty is 

the field of probabilistic reasoning (Pearl 1988). This field studies methodologies to 

represent and reason about uncertain knowledge through the use of probability 

theory. Some of the developed models, like Bayesian and Markov networks (Roller et 

al. 2007), are considered the state of the art on dealing with uncertainty. In fact, 

based on the success of probabilistic reasoning and other similar areas, some efforts 

have been made on representing and reasoning with uncertainty in the Semantic 

Web (Thomas Lukasiewicz and Umberto Straccia 2008). These works mainly focused 

on extending the logics behind Semantic Web languages with 

probabilistic/possibilistic/fuzzy concepts, or on combining these languages with 

probabilistic formalisms like Bayesian networks. However, most of these approaches 

have some problems of applicability in real domains, mainly because its complexity 

and domain restrictiveness.  

Recently, a new area of research, called statistical relational learning (SRL) (Lise 

Getoor and Ben Taskar 2007), has arisen. SRL tries to expand probabilistic reasoning 

to complex relational domains, like the Semantic Web. This is achieved by combining 

representation formalisms, like logic and frame-based systems, with probabilistic 

models. Some of its more expressive and complete approaches, like Bayesian logic 

(Milch et al. 2007) and Markov logic (Pedro Domingos, Stanley Kok, et al. 2008), have 

proven to provide interesting capabilities on learning and reasoning about 

uncertainty in many real world domains. 

The objective of this thesis is to study mechanisms to perform probabilistic reasoning 

in the Semantic Web. For this purpose, we use Markov logic, a novel representation 

formalism that combines first-order logic with probabilistic graphical models. 

In Markov logic, unlike first-order logic, worlds that violate formulas are not 

impossible, but only less probable. This is achieved by attaching weights to first-

order formulas: higher the weight, bigger the difference between a world that 

satisfies the formula and one that does not, other things being equal. These 

weighted formulas represent a Markov logic network, which can be seen as a 

template to construct Markov networks from given sets of constants: each ground 

atom is a variable, logical connectives are the edges between variables, and each 

grounded formula is a feature. The resulting Markov network gives a probability 
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distribution over the possible worlds, being used to answer any probabilistic query 

about the domain. 

Therefore, to apply Markov logic in the Semantic Web, two objects are needed: 

first-order formulas and their weights. Formulas can be acquired by interpreting the 

semantics of Semantic Web languages as sets of first-order formulas. Since most of 

these languages represent ontologies based on Description Logics (Baader et al. 

2007), they follow a model-theoretic semantics, having a direct correspondence with 

formulas in first-order logic. Weights can be acquired by several ways: if ontologies 

are annotated with some kind of uncertainty values, like probabilities, we can 

interpret these values as weights and perform reasoning; if ontologies contain 

individuals, these individuals can be used to learn the weights; if we do not have 

uncertainty annotations or individuals, both can be learned through the analysis of 

textual resources and web search engines. 

To demonstrate the feasibility of our approach, we developed Incerto, a system 

that provides a Semantic Web interface to Markov logic reasoning and learning 

capabilities. This system can be accessed visually and programmatically, and was 

used in many interesting Semantic Web tasks, like ontology learning (Maedche 2002) 

and social network analysis (Mika 2007). 

The main contributions of this thesis are: 

• The application of Markov logic for learning and reasoning about uncertainty 

in the Semantic Web;  

• The development of several techniques for learning automatically the 

uncertainty of ontologies;  

• The development of a new technique to parameterize Markov logic networks 

with probabilities;  

• The development of a new technique to learn the probability of ontology 

axioms by using web search engines;  

• The development of Incerto, and its application to several Semantic Web 

domains. 

The organization of this thesis is as follows: 

• Chapter 2 reviews the main concepts that are used in this thesis. A 

description of the related work is also provided; 

• Chapter 3 describes our proposed approach, with several application 

examples; 

• Chapter 4 presents the main features of the developed system; 

• Chapter 5 gives general conclusions and future directions of this work. 
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2. State of the Art 

In this chapter, we present the main concepts used in this thesis. First, a review on 

logic and probabilistic reasoning is provided. Next, we introduce the field of 

statistical relational learning, followed by an explanation about the main concepts 

behind the Semantic Web. Finally, an introduction to Markov logic is provided, 

followed by a description of the most relevant related work to this thesis. 

2.1. Logic 

Over the centuries, logic has been studied has the underlying mechanism of valid 

demonstration and inference. The roots of many disciplines, like philosophy, 

mathematics, and computation, are based on the principles of logic. In this work, 

logic is used as a knowledge representation formalism. For this purpose, logic 

provides a meaningful and unambiguous way of representing knowledge. The next 

sections describe three types of logic that are of most importance to this work: 

propositional logic, first-order logic, and description logics. But before, a slight 

introduction to the general logic concepts is provided. 

2.1.1. Logic as a Knowledge Representation Formalism 

The main component of logic as a knowledge representation formalism is the 

knowledge base (KB) (Stuart Russell and Norvig 2002). Each logical KB is composed 

by a set of formulas, or sentences, expressed in a logical language. These formulas 

are expressed according to the syntax of the logical language, i.e., the specification if 

the formulas are well formed. Their semantics define the truth of each sentence with 

respect to each possible world. For example, the sentence FatherOf(x,y) is true in a 

world where x is the father of y. These possible worlds are usually called models. 

Inference, i.e., derive new facts and relations from existing knowledge, is the main 

objective of a logical KB. Inference algorithms use the entailment between 

sentences, i.e., if a sentence follows logically from another sentence, in this task. 

Entailment is usually represented by � � �, meaning that in every model where � is 

true, � is also true. For example, �����	
��, �� � ���
���, � because in every 

model where x is father of y, y is also the son of x. Inference can be defined as the 

process of finding a specific entailment in a KB. This is usually represented by 

�� �� �, meaning that the entailment � is derived from KB using inference algorithm 

i. 

There are two important properties of inference algorithms: soundness and 

completeness. An algorithm is sound if it only derives entailed sentences (i.e., it only 

derives sentences that are valid with respect to their semantics). An algorithm is 

complete if it can derive any sentence that is entailed (i.e., it can derive all the true 

sentences). 
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Since logical KBs provide a representation of knowledge, the correspondence 

between the representation and the real knowledge must be defined. This 

procedure is called grounding, and is usually made by establishing connections 

between the symbols and their meanings. 

Next, a simple logic to represent logical KBs, propositional logic, is defined. 

2.1.2. Propositional Logic 

A propositional logic KB (Stuart Russell and Norvig 2002) is a set of formulas in 

propositional logic. Formulas are composed by symbols, representing prepositions 

that can be true or false. Symbols are usually represented in uppercase names (e.g., 

A and BOB are symbols). There are two symbols with fixed meaning: TRUE is the 

always-true preposition, and FALSE is the always-false preposition. These kind of 

simple formulas, with only one symbol, are called atomic formulas (or atoms). More 

complex formulas can be built from atoms by using logical connectives. 

 

Connective Meaning 

¬ Not 

� And 

� Or 

� Implication 

� Biconditional 

Table 1. Logical connectives. 

Logical connectives have an order of precedence (¬,�,�, �, �, with decreasing 

precedence), but delimiters can be also used to ensure precedence (e.g., � � �� � �� 

instead of � � � � �). 

The models of propositional logic are defined by simply assigning true or false 

values to the proposition symbols (i.e., for N propositional symbols, there are 2  

models). The truth value of a formula in a model can be easily computed: 

• Atomic formulas already have their trueness computed (they are either true 

or false); 

• Complex formulas are computed recursively using truth tables: 

 

P Q ¬P ! � " ! � " ! � " ! # " 
false false true false false true true 

false true true false true true false 

true false false false true false false 

true true false true true true true 

Table 2. Logical truth table. 
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Inference in propositional logic is both sound and complete, and several 

algorithms, like model-checking and resolution (Stuart Russell and Norvig 2002), 

were studied. 

Propositional logic is a simple and powerful language to represent knowledge. 

However, it lacks of expressive power to describe concisely very large domains. For 

example, it is difficult to state the fact that all the persons have a name, since we 

have to write a formula with that information for each person, increasing the 

number of models exponentially by the number of persons. For this reason, more 

expressive languages have been developed. First-order logic is one of them. 

2.1.3. First-order Logic 

First-order logic (FOL) (Barwise and Etchemendy 2002) (Stuart Russell and Norvig 

2002) builds a more expressive language in the foundations of propositional logic. 

This new language is designed to create accurate real world models, characterized by 

a large number of objects, with relations between them.  

A first-order logic KB is a set of formulas in first-order logic. FOL uses four types of 

symbols:  

• Constants, representing objects (i.e., individuals) in the domain (e.g., Anna, 

Bob);  

• Variables, ranging over constants (e.g., x, y);  

• Functions, mapping objects to objects (e.g., motherOf(Bob)=Anna); 

• Predicates, representing binary relations between objects (e.g., Friends(Anna, 

Bob)). 

Variables can be typed, meaning that they can only model a restricted range of 

objects (e.g., variable x only ranges about People).  

A term is an expression representing an object. It can be a constant, a variable or 

a function of finite arity (e.g., x, Pedro and Friends(x,y) are terms). A term is 

grounded when it contains no variables (e.g., Friends(Anna, Bob) is a grounding of 

Friends(x,y)). 

The simplest FOL formula is an atom, composed by a predicate with a finite 

number of terms as parameters (e.g., Friends(x,Pedro) and 

Friends(Pedro,motherOf(Bob)) are atoms). Just like propositional logic, more complex 

formulas can be formed by joining atoms with logical connectives (¬,�,�, �, �� and 

delimiters. FOL also supports quantifiers. 

 

Quantifier Meaning 

$ Universal Quantification 

% Existential Quantification 
Table 3. First-order logic quantifiers. 
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A formula is grounded when all of its terms are also grounded. Some examples of 

formulas are provided: 

 

1. $$�$& '  �	(��)*�, �� � �	(��)*��, &�  � �	(��)*�, &� 

2. $ '  �	(��)*�, +����	
���� 

3. ,�(-�.�	*�/�	�0-�1, �2�(�� 

 

Formula 1 states that friends of friends are also friends. In the second formula, 

everyone is friend of his mother, and formula 3 states that two countries, Portugal 

and Spain, are neighbors. 

Models in FOL are tuples (D,I), where D is a set of domain elements, and I is an 

interpretation. The domain elements are the objects contained in that model (e.g., 

the domain of $, � �	(��)*�, �� is all the objects that can take the values x and y). 

The interpretation is an assignment that maps objects, functions and relations into 

symbols (e.g., one possible interpretation of motherOf(Pedro) is that motherOf refers 

to the motherhood relation, and Pedro refers to the author of this work). Since 

symbols can have various interpretations, there are distinct models relating to those 

interpretations. The truth value of a formula can be determined given a model and 

an interpretation of the values of the variables (i.e., an assignment of objects from 

the domain to the variables). 

Every first-order KB can be translated to clausal form, also known as conjunctive 

normal form (Barwise and Etchemendy 2002). A KB in clausal form is a conjunction of 

clauses, each clause being a disjunction of literals. For example, Formula 1 can be 

translated as 3�	(��)*�, �� �  3 �	(��)*��, &� � �	(��)*�, &�. This translation is 

useful in automated inference. 

Propositionalization and unification techniques (Stuart Russell and Norvig 2002) 

can be used in FOL inference, providing both sound and complete inference. 

However, entailment is only semidecidable (i.e., the algorithm return yes when the 

right answer is yes, but it fails to say no when the right answer is no). Since this 

characteristic arise problems in many domains, other logical languages, like 

Description Logics, have been developed. 

2.1.4. Description Logics 

Description Logics (DLs) (Baader et al. 2007) are a family of logical languages based 

on Semantic Networks and Frame Systems. They are specially designed to model 

terminological domains. Historically, they were designed as a subset of first-order 

logic, providing decidable reasoning, while maintaining some of the most important 

expressivity characteristics of it. DLs use two types of symbols: 

• Atomic concepts, representing sets of individuals; 

• Atomic roles, expressing relationships between individuals. 
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Description Logics KBs are composed by descriptions. Elementary descriptions are 

composed by atomic concepts and atomic roles. More complex descriptions can be 

composed by using concept constructors. The following basic concept constructors 

are usually used: 

 

Constructor Meaning 5 Universal Concept 

6 Bottom concept 

¬ Atomic Negation 

7 Logical Intersection 

8 Logical Union 

9 Logical Equivalence 
Table 4. Basic Description Logics concept constructors. 

All of these constructors have a similar meaning to those presented in the 

previous logics. However, more complex constructors can also be used: 

• $:. �, called value restrictions, describing individuals which are always 

connected by role R to the concept C; 

• %:. �, called existential quantification, describing all the individuals 

connected by role R with concept C; 

• � ; <, called subsumption, describing that the concept D is more general 

than concept C. 

• = �:, called number restrictions, restricting the cardinality of the role R to 

the number n (= can be substituted by > or ?). 

DLs divide KBs in two distinct parts: the intensional knowledge in the form of a 

terminology, called Terminological Box (TBox), and the extensional knowledge, called 

Assertional Box (ABox). The TBox provides the vocabulary, in terms of concepts and 

rules, of the KB. This is usually done by defining concepts using the logical 

equivalence constructor (e.g., @�A�� 9 /�	*�� 7 ��A�1�). The Abox uses the TBox 

vocabulary to make assertions about individuals. There are two kinds of assertions, 

corresponding for the two symbols of the language: concept assertions (e.g., 

/�	*���/B<:
�) and role assertions (e.g.,  �	(��)*��
�, �,,��). 

DLs provide a model-theoretic semantics. This means that descriptions can be, in 

most of the cases, identified with formulas in first-order logic. The main idea behind 

this identification is that concepts correspond to unary predicates, roles to binary 

predicates, and individuals correspond to constants (e.g., @�A�� 9 /�	*�� 7
��A�1� is interpreted as $ @�A���� # /�	*���� � ��A�1���). 

As previously referred, Description Logics is a family of languages. These 

languages are characterized by the use of different operators. Usually, all the 

languages are based in the Attributive Language (AL). This language supports 

atomic negation, concept intersection, universal restrictions, and limited existential 
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quantification. To distinguish different languages, labels were created to determine 

the expressivity of these languages. 

 

Label Meaning 

EL Intersection and Full Existential Restrictions 

F Functional Properties C Full Existential Quantification 

U Concept Union 

C Complex Negation 

S ALC with transitive Roles 

H Role Hierarchy 

R Ir/reflexity and role disjointness 

O Nominals 

I Inverse Properties 

N Cardinality Restrictions 

Q Qualified Cardinality Restrictions 

(D) Use of Datatype properties 

Table 5. Description Logics labels. 

For example, the language SHOIN is ALC with Transitive Roles (S), plus Role 

Hierarchy (H), Nominals (O), Inverse Properties (I), and Cardinality Restrictions (N). 

The expressivity of the language determines the complexity of its inference. While 

some DLs are a decidable subset of first-order logic, others can go beyond first-order 

and have problems of decidability, soundness and completeness. Inference in DLs is 

usually made by using specific tableau-based algorithms (Ralf Moller and Volker 

Haarslev 2008). 

2.2. Probabilistic Reasoning 

Many real world domains are characterized by uncertainty (Lindley 2006). There is 

only a limited knowledge about the domain, being very difficult to exactly describe 

the domain or predicting its future behavior. When modeling a domain, uncertainty 

can be the result of distinct reasons (Stuart Russell and Norvig 2002): 

• Laziness, when it is too difficult to correctly model the domain; 

• Theoretical ignorance, when there is not enough information to correctly 

model the domain; 

• Practical ignorance, when all the knowledge is available, but the user does 

not know how to model it correctly. 

One way of dealing with uncertainty is through probability theory, where a degree 

of belief (i.e., a probability) is assigned to the knowledge in the domain. Probabilistic 

reasoning is an area that tries to find efficient mechanisms to reason under uncertain 
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knowledge expressed through probability theory. In this area, probabilistic graphical 

models provide a compact and expressive tool to deal with uncertainty and 

complexity, by joining concepts from probability theory and graph theory in the 

same representation. There are two main kinds of probabilistic graphical models: 

directed (Bayesian networks) and undirected (Markov networks). In this section, the 

concepts behind these two models are described. First, a brief introduction on 

probability theory is given. 

2.2.1. Probability Theory 

The main concept behind probability theory (Stuart Russell and Norvig 2002) is the 

probability: a value between 0 and 1 representing the degree of belief in a statement 

(assigning a probability near 1 to a statement represents a strong belief in that 

statement, while near 0 represents discredit in the statement). 

The basic unit of probability theory is the random variable, which represents a 

variable with initial value unknown. This variable has a domain, representing the 

values that it can take.  In this work, we focus on variable with discrete domains 

(e.g., the random variable Weather can take the values {sunny, rainy,cloudy,snow}). 

Random variables can be joined in propositions, using the same logical connectives 

as logical languages (e.g., @�����	 ? 	�(�� � D�A2�	��0	� ? 1�E). Probabilities are 

given to propositions, declaring the degree of belief in those propositions. There are 

two main kinds of probabilities:  

• Prior probability P(a), which is the degree of belief in preposition a in the 

absence of any other information (e.g., P(Weather=rainy) = 0.2); 

• Conditional (or posterior) probability P(a|b), which is the degree of belief in 

proposition a given preposition b (e.g., P(Weather=rainy|Temperature=low) = 

0.4).  

Conditional probabilities can be defined in terms of prior probabilities as 

/��|.� ? /�� � .�/�.� , 2.1 

/�� � .� ? /��, .� ? /��|.�/�.�. 2.2 

Each discrete random variable has a prior probability distribution associated. This 

distribution gives the values for the probabilities of each individual state of the 

variable (e.g., P(Weather) = [0.6,0.2,0.15,0.5] means that P(Weather=sunny)=0.6, 

P(Weather=rainy)=0.2, and so on). Joint probability distributions between random 

variables are defined by a combination of states of the variables (e.g., 

P(Weather,Temperature) has a N x M probability table, being N the size of the 

domain of Weather, and M the size of the domain of Temperature). A joint 

probability distribution with all the variables in the world is called a full joint 

probability distribution. This type of probability distribution is a complete 

specification of the uncertainty of the world, and can be therefore used to answer 

any probabilistic query about the world. For example, the full joint probability 

distribution table of two binary random variables (Sunny and Hot) can be defined by: 
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 Hot ¬Hot 

Sunny 0.55 0.1 

¬Sunny 0.05 0.3 
Table 6. Full joint probability distribution table of binary random variables Sunny and Hot. 

Given that distribution, some probabilistic queries can be made: 

/��0��� � G��� ? 0.55 

/�G��� ?  0.55 J 0.05 ? 0.6 

/��0���|G��� ?  
0.55
0.6

L 0.92 

Conditional probabilities, like Formula 2.1, can also be defined by the Bayes’ 

theorem 

/�N|O� ?
/�O|N�/�N�

/�O�
. 2.3 

Since the size of the full joint distribution tables grows with the number of 

random variables (and the size of their domains), this type of probabilistic reasoning 

can be intractable in many cases (e.g., N binary random variables correspond to a 

table with 2  elements). For this purposes, more advanced representations were 

designed to overcome this problem. The field of probabilistic graphical models 

studies how some interesting properties of graph theory can be used in probabilistic 

reasoning. 

2.2.2. Probabilistic Graphical Models 

Probabilistic graphical models (Roller et al. 2007) (Jordan 2004) combine probability 

theory and graph theory in the same representation, allowing to compactly 

represent complex domains. The main goal is to efficiently represent a joint 

probability distribution over a set of random variables. For this purpose, they explore 

the structure of the distribution, by using the independence properties between 

random variables, to generate a compact and modular representation of the 

distribution. The independence property that they explore is the conditional 

independence, i.e., if two random variables are independent in their conditional 

probability distribution given a third random variable. A random variable X is 

conditionally independent of Y given Z if 

/�O, N|P� ? /�O|P�/�N|P�. 2.4 

There are two main classes of probabilistic graphical models that explore these 

properties: directed (Bayesian networks) and undirected (Markov networks). 

Bayesian Networks 

Bayesian networks (Stuart Russell and Norvig 2002) represent a joint distribution of 

random variables as a directed acyclic graph. Its nodes are the random variables, 
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while the edges correspond to direct influence from one node to another. Each 

random variable has an associated conditional probability distribution, normally 

represented as a table (conditional probability table, CPT). These CPTs capture the 

conditional probability of the random variable given its parents in the graph. 

 
Figure 1. Simple Bayesian network with 4 binary random variables and their conditional probability 

tables. 

This graphical representation provides a complete description of the joint 

probability distribution of its random variables. This way, the joint probability 

distribution of a set of random variables O ? QOR, … , OTU  can be written as 

/�O ? � ? V /��|2�	���*�O���
T

�WR
, 2.5 

where 2�	���*�O�� returns the specific values of the parents of the random variable 

O�. For example, given the Bayesian network of Figure 1, the probability of being 

sunny and hot, and we go to the beach but do not take a walk is /�� ? �	0�, G ?
�	0�, @ ? ��1*�, � ? �	0�� ? /���/�G�/�¬@|��/��|�, G� ? 0.65 X 0.6 X 0.7 X 0.9 L
0.25. 

Bayesian networks graph representation also encodes important results to study 

the interdependence between random variables. The most important is that a node 

is conditionally independent of its non-descendants given its parents (e.g., Walk is 

conditionally independent of {Beach,Hot} given Sunny). Other independence 

assertions can be found by using a complex procedure called d-separation (Bishop 

2007). This procedure uses the flow of the nodes edges to decide if a set of nodes X 

is independent of another set Y given a third set Z. 

Markov Networks 

Markov networks (also called Markov random fields) (Roller et al. 2007) (Pedro 

Domingos, Stanley Kok, et al. 2008) represent a joint probability distribution of 

random variables as an undirected graph, where the nodes represent the variables, 

and the edges correspond to some notion of direct probabilistic interaction between 

neighboring variables. This interaction is parameterized by potential functions. There 

is a potential function for each clique (i.e., a completely connected sub-graph) in the 

graph, being this potential function a non-negative real-valued function of the state 

of the corresponding clique. 

Sunny

Beach

Hot

Walk

P(S) P(¬S)

0.65 0.35

P(H) P(¬H)

0.6 0.4

S H P(B|S,H) P(¬B|S,H)
t

t
f
f

f 0.1 0.9

t 0.9 0.1
t 0.4 0.6
f 0.01 0.99

S P(W|S) P(¬W|S)
t
f

0.3 0.7
0.05 0.95
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Figure 2. Simple Markov network with 4 binary random variables and their potential functions. Clique 

1 is composed by nodes {Sunny, Walk}, Clique 2 by {Hot, Beach}, and Clique 3 by {Beach, Sunny}. 

The joint probability distribution of set of random variables O ? QOR, … , OTU in a 

Markov network can be represented by 

/�O ? � ? 1P [ \]�Q]U�
]

, 2.6 

where \] and Q]U are the potential function and the state of the kth clique, 

respectively. This way, the probability of a state can be obtained by multiplying the 

values of the potential function of all the cliques in that state. Since the sum of all 

probabilities of all the states it is not 1, it is necessary to divide the formula with a 

normalizing constant, Z, called partition function. The partition function is defined by 

the sum of the product of potentials for all possible states 

P ? V [ \]�Q]U�
]^_`

. 2.7 

Just like in Bayesian networks, the probability of being sunny and hot, and we go 

to the beach but do not take a walk can be easily calculated by using the Markov 

network of Figure 2: /�� ? �	0�, G ? �	0�, @ ? ��1*�, � ? �	0�� ? R
a

�2 X 1.6 X 2.8� ?
c.de

a
. 

However, there is a problem with this representation. Since we need a value of 

the potential function for each state Q]U of a clique, the size of the representation is 

exponential in the size of the cliques. For example, if we have a clique with N binary 

nodes, there are 2  possible states. So, it is often convenient to use a different way 

of specifying potentials that can ease this problem. This is done by using log-linear 

models, with each clique potential replaced by an exponentiated weighted sum of 

features of the state: 

/�O ? � ?
1
P

� 2 fV Eg�g��
g

h , 2.8 

P ? V �2 fV Eg�g��
g

h
^_`

. 2.9 

H B Ø(H,B)

t

t

f

f

f 1.6

t 3

t 0.4

f 2.5

Sunny

Beach

Hot

Walk
B S Ø(H,B)

t

t

f

f

f 2.8

t 1.7

t 0.2

f 2.8

S W Ø(H,B)

t

t

f

f

f 2

t 1.7

t 0.3

f 3.1

Clique 2

Clique 3

Clique 1
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Now, instead of potential functions, there are features �g��, each one with an 

associated weight Eg. A feature is a real-valued function of a state. Each feature can 

represent more than one state of a clique, being this way a more compact 

representation than potential functions. If a feature is represented for each state of 

each clique, the log-linear model can be easily translated to the potential function 

model, and vice-versa. So, both models can be used interchangeably, depending on 

the purposes. A simple feature of the previous example can be defined as: 

 
Figure 3. Simple Markov network with 4 binary random variables and one example feature for the 

clique {Sunny, Walk}. 

Like Bayesian networks, Markov networks also encode useful information about 

the independence between random variables. However, independence in Markov 

networks is way easier to assert: a node is conditionally independent of the rest of 

the nodes in the graph given only its immediate neighbors (usually called the Markov 

blanket of a node) (e.g., Beach is conditionally independent of Walk given Sunny and 

Hot). 

Comparison between Probabilistic Graphical Models 

As seen in the previous sections, both Bayesian networks and Markov networks 

provide a compact representation of the joint probability distribution over a set of 

random variables. However, they are both different in many important aspects: 

 

Property Bayesian Network Markov Network 

Graph Directed Undirected 

Parameterization Conditional probabilities Potential function/Features 

Cycles Not Allowed Allowed 

Partition Function Not necessary (Z=1) Necessary 

Independence Checking Parents/D-Separation Neighbors 
Table 7. Comparison between Bayesian networks and Markov networks. 

Both approaches have advantages and disadvantages. While Bayesian networks 

are easier to model and understand, they do not allow cycles and the independence 

between variables is harder to determine. Markov networks allow cycles and simple 

independence checking, but its parameterization is hard to understand, and the 

calculations of the partition function can be very intensive in large domains. So, 

Sunny

Beach

Hot

Walk

F(S,W)

w = 1.5

1 if Sunny=true ^ Walk=false

0 otherwise
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when choosing a representation, the domain must be carefully studied to determine 

the best relation between advantages and disadvantages offered by these 

representations. 

However, for the purpose of the following section, both representations are 

treated as the same model representation. It is studied that Bayesian networks are a 

special case of Markov networks, and they can be converted in a Markov network by 

the construction of a moral graph, where the directed edges are transformed in 

undirected ones, and conditional probability distributions are contained in cliques 

(for a complete explanation of this process see (Bishop 2007)). 

Until now, only the general properties of probabilistic graphical models were 

provided. In the next section, efficient inference techniques for these 

representations are demonstrated. 

2.2.3. Inference in Probabilistic Graphical Models 

Since probabilistic graphical models can represent the full joint probability 

distribution over the set of random variables O ? QOR, … , OTU, they can be used to 

answer any probabilistic query about the world. There are two main types of queries 

(Roller et al. 2007): 

• The conditional probability query P(Y | E=e), composed by two parts: the 

evidence, a set of random variables E and their observed values e; and the 

query, a set Y of random variables. Our task is to compute the probability 

distribution over the possible values y of Y, conditioned on the fact that E=e. 

For example, P(Beach | Sunny=true, Hot=true) gives two probability 

distributions: one when Beach=true and another when Beach=false ; 

• The most probable assignment to some subset of variables given the 

evidence E=e. This type of query has two variants: 

o Most probable explanation (MPE), when we want to find the most likely 

assignment to all of the non-evidence variables, i.e., if W=X-E, and we 

want to find the most likely assignment to W given the fact E=e. This can 

be defined as �	-A�i/�E, ��. For example, a MPE query given 

{Sunny=true, Hot=true} gives the most likely assignment to the variables 

Beach and Walk; 

o Maximum a posteriori (MAP), when we want to find the most likely 

assignment to a set of variable Y given the evidence E=e, i.e., 

�	-A�j/��|��. For example, a MAP query of Beach given {Sunny=true, 

Hot=true} gives the most likely assignment to the variable Beach. 

By generating the full joint distribution of the random variables, all of these 

queries can be answered in a simple way: in a conditional probability query, we just 

sum the corresponding entries in the joint distribution; in MPE queries we just 

search for the most likely entries of the non-evidence variables in the joint 
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distribution; and in the MAP query, we must sum the entries like the conditional 

probability query and search for the most likely entry. However, generating the full 

joint distribution is impractical in many cases. So, specialized algorithms were 

developed to overcome this limitation. There are two main classes of those 

algorithms: exact algorithms and approximate algorithms. 

Exact Algorithms 

If Z=X-Y-E is a set of random variables, usually called hidden variables, a conditional 

probability query of Y given E=e can be calculated as 

V /�N, P|B ? ��
a

. 2.10 

For example, given the Markov network of Figure 2, 
/����k�|�0��� ? �	0�, G�� ? �	0�� ? /����k�, @�1l|�0��� ? �	0�, G�� ? �	0��. 
However, in the worst case, the complexity of this algorithm, in the case of n binary 

variables, is 
��2T�. The biggest reason of this complexity is that there are many 

repeated calculations. For this purpose, algorithms based on dynamic programming, 

like the variable elimination algorithm (Stuart Russell and Norvig 2002), can be used. 

This algorithm evaluates the expression from right-to-left and save the intermediate 

results, avoiding repeated calculations. In most of the cases, the complexity is 

reduced to 
�2T�. More advanced algorithms, like join trees (Jordan 2004), can be 

used to reduce the complexity to 
��� in the best case. However, even if the 

complexity of the algorithm is reduced, this problem continues to be NP-Hard, 

requiring exponential time and space to construct the graphical model 

representation. Approximate algorithms were developed to overcome this 

limitation. 

Approximate Algorithms 

The most used approximate inference algorithms are based on randomized 

sampling, being the calculations made in a set of random samples taken from the 

distribution represented by the graphical model. Markov Chain Monte Carlo (MCMC) 

(Stuart Russell and Norvig 2002) is one of these algorithms.  

The algorithm starts with a random state, representing the first sample, and 

iteratively generates the next samples by sampling the value of one of the non-

evidence variables  P�, conditioned on the current values of the variables in the 

Markov blanket of P�. For example, given the Markov network of Figure 2, if we want 

to calculate /����k�|�0��� ? �	0�, G�� ? �	0��, the first state can be {Beach=true, 

Walk=false, Sunny=true, Hot=true}. In the next state, we can sample Walk given its 

Markov Blanket, i.e., /�@�1l|�0��� ? �	0��. If the random sample is Walk=true, the 

next state is {Beach=true, Walk=true, Sunny=true, Hot=true}. Basically, the algorithm 

wanders randomly through the search space, flipping the values of the non-evidence 

variables, maintaining the evidence variables fixed. The visited states are used to 

estimate the value of the query. For example, if we have 8 states were Beach=true 
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and 2 states where Beach=false, /����k� ? �	0�|�0��� ? �	0�, G�� ? �	0�� ? 0.8 

and /����k� ? ��1*�|�0��� ? �	0�, G�� ? �	0�� ? 0.2. 

2.3. Statistic Relational Learning 

Real world data is characterized by high degrees of relational complexity and 

uncertainty. For example, to assert if a webpage belongs to a certain topic, not only 

the words in the page have to be taken in account, but also its relations (hyperlinks) 

with another pages. Since webpages can influence each other results, there is a 

collective classification of webpages, where the results for all the webpages are 

simultaneously decided by using the correlation between pages. Webpages are also 

characterized by noisy and incomplete information. For example, certain words can 

be ambiguous (e.g., Wordnet (Fellbaum 1998) identifies 18 different senses1 to the 

word bank), and they can only disambiguated with a certain degree of confidence. 

So, when dealing with this kind of domains, systems must be prepared to deal with 

uncertainty. 

However, most of the current techniques are not prepared to deal with this type 

of information. Statistical relational learning (SRL) (Lise Getoor and Ben Taskar 2007) 

is a new area of research that attempts to represent, reason, and learn in domains 

with complex relational and rich probabilistic structure. SRL tries to combine ideas 

from the area of statistical learning, which deals with uncertainty, and the area of 

relational learning, which deals with complexity, in a unifying representation. 

Most of the SRL approaches can be segmented by its representation formalism, 

dealing with the complexity problem, and by the probabilistic semantics, dealing 

with the uncertainty. Representation is usually based on either logic (e.g., first-order 

logic, logic programs) or frame-based (e.g., entity-relationship models, object-

oriented). Probabilistic semantics are mostly based on probabilistic graphical models 

(e.g., Bayesian networks, Markov networks) or stochastic grammars. Based on this 

segmentation, the most relevant SRL approaches can be represented in a taxonomy 

(Figure 4). 

                                                      

 

 

 

 
1
 http://wordnetweb.princeton.edu/perl/webwn?s=bank 



 

 

 
 17 

 

 
Figure 4. Statistical relational learning taxonomy. 

Most of the frame-based systems use probabilistic graphical models as the 

underlying probabilistic semantic. Probabilistic Relation Models (PRMs) (U. Getoor et 

al. 2007) use pure frame-based systems to extend Bayesian networks with the 

concepts of objects, their properties, and relations between them. This way, 

Bayesian networks can naturally deal with relational complexity. Given a database of 

objects and their relations, a PRM define a probability distribution over the 

attributes of the objects. PRMs can be manually built or learned from existing 

databases. Direct Acyclic Probabilistic Entity-Relationship Models (DAPERs) 

(Heckerman, Meek, and Koller 2007) also use Bayesian networks as the probabilistic 

semantics. However, DAPERs focus on a more expressive frame-based 

representation than PRMs: entity-relationship (ER) models. They extend ER models 

to handle probabilistic relationships, creating a statistical modeling tool to model 

probabilistic ERs. 

Relational Markov Networks (RMNs) (B. Taskar et al. 2007) combine relational 

models and Markov networks, providing a probabilistic modeling tool to model 

relational models. RMNs provide a compact way of representing Markov networks 

over a relational domain by specifying the cliques and potentials between attributes 

of related entities. Since an RMN provides a model of the structure of the Markov 

network, it can be used to provide a coherent distribution over any instance (or 

collection of instances) that fits in this model. The uncertainty of the model (i.e., its 

parameterization) can be learned from example data by using discriminative learning 

or conjugate gradient methods combined with belief propagation. 

Relational Dependency Networks (RDNs) (Neville and Jensen 2007) is an extension 

of dependency networks for relational data. Dependency networks are mixed 

probabilistic graphical models that combine in the same representation both 

directed and undirected relations between variables. The main difference to 

Bayesian and Markov networks, apart its mixed representation, is that dependency 

networks are a purely approximate models (they do not guarantee a coherent 
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probability distribution). By using sample-based techniques, inference and learning 

can be easily implemented in RDNs. 

Logic is another representation used in SRL approaches. Stochastic Logic 

Programs (SLPs) (Muggleton and Pahlavi 2007) combine logic programs with 

stochastic grammars. Logic programs, in their most basic form, are a subset of first-

order logic. They provide a simple and powerful language to represent possible 

theories of a world in a rule-like syntax. Each rule is composed by a head, also called 

conclusion, followed by a rule body, also called premise. Logic programs are the base 

of many logic programming environments, like Prolog (Sterling and Ehud Shapiro 

1994). Stochastic grammars are grammars where each production has an associated 

probability. This way, when deriving, some grammatical derivations are more 

relevant than another’s. Since logic programs are more expressive than stochastic 

grammars, the main idea behind SLPs is to lift stochastic grammars to the expressive 

level of logic programs, by combining both approaches. Both parameters and 

structure can be easily learned from facts or clauses by using expectation 

maximization techniques and beam-search, respectively. Bayesian Logic Programs 

(BLPs) (Rersting and De Raedt 2007) also use logic programs as the underlying 

representation formalism. However, their semantics are provided by Bayesian 

networks. Just like in PRMs, Bayesian networks are extended with the concepts of 

objects, their properties, and relations between them. The difference is that BLPs 

use logic programs as the formalism to provide those features. 

Bayesian Logic (BLOG) (Milch et al. 2007) combines first-order logic with Bayesian 

networks in the same representation. Compared to BLPs, BLOG is way more 

expressive, making possible to model more complex domains. BLOG is especially 

designed to deal with unknown objects, i.e., when there are no information about 

some objects and the system must infer that they actually exist. Markov Logic (ML) 

(Pedro Domingos, Stanley Kok, et al. 2008) combines first-order logic with Markov 

networks. Each first-order formula has an associated weight, representing a Markov 

logic network (MLN). This MLN can be seen as a template to construct Markov 

networks from given sets of constants: each ground atom is a variable, logical 

connectives are the edges between variables, and each grounded formula is a 

feature. The resulting Markov networks give a probability distribution over the 

possible worlds. Parameters can be learned generatively or discriminatively, and 

structure can be learned or refined by using bottom-up structure learning 

algorithms. 

2.4. Semantic Web 

The Semantic Web envisions a world where agents share and transfer structured 

knowledge in an open and semi-automatic way. In this section, the main concepts 

and technologies behind that vision are described. First, the main reasons behind the 

need for a Semantic Web are identified, followed by an explanation of its layered 

architecture. 



 

 

 
 19 

 

2.4.1. From the Syntactic Web to the Semantic Web 

In the current World Wide Web (WWW) most of the information is represented in 

Hyper Text Markup Language (HTML)2. This language was made to represent visually 

the information to the user, and no efforts have been made to make it 

understandable by machines.  For example, consider this excerpt of a simple HTML 

web page and its Web-browser visualization:  

 

1. <h1>Pedro Oliveira</h1> 

2. <p>MSc Student in Informatics Engineering</p> 

3. <p>University of Coimbra, Portugal</p> 

 

 
Figure 5. Visual representation of the previous HTML. 

By seeing the page, the user understand that this page is dedicated to a person, 

named Pedro Oliveira, a MSc student in Informatics Engineering at the University of 

Coimbra in Portugal. But to the machine, the only information that it can understand 

is that there is a header that says Pedro Oliveira, with two more paragraphs. But 

what is Pedro Oliveira? Is it a person? A place? Or is just some random meaningless 

words that the web developer chooses to give to the header of the page? And what 

is the relation of the header with the proceeding paragraphs? 

This web is usually called the Syntactic Web (Breitman, Casanova, and 

Truszkowski 2006), where information presentation is carried out by computers, and 

the interpretation and identification of relevant information is delegated to human 

beings. There is no meaning associated with the text, being the markup metadata 

(e.g., <h1>) only used to visually represent the related text. For the machine it is only 

possible to know the syntactic information of the text, i.e., if it is a verb, a pronoun, a 

number, etc. There is no information about the meaning, i.e., the semantics, of the 

text.  

                                                      

 

 

 

 
2
 http://www.w3.org/html/ 

Pedro Oliveira

MSc Student in Informatics Engineering

University of Coimbra, Portugal
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In the last years, the scientific community put a lot of effort on trying to extract 

meaning from unstructured data, like those present in the WWW. Some fields like 

Information Retrieval (Baeza-Yates and Ribeiro-Neto 1999), Machine Learning 

(Bishop 2007), and Natural Language Processing (Jurafsky and Martin 2008) have 

produced increasily complex systems for this task. Some of these systems are the 

base of very large companies like Google
3, Yahoo

4, and SAS
5. Although, in all of those 

systems there is still currently a knowledge gap (Mika 2007) between what the 

machine understands and is able to work with, and what the user knows and infers 

about the data. This handicap from the machine is mainly consequence of 

technological difficulties in understanding the contents of a webpage. Since the 

contents are expressed in natural language, images, videos, or other complex 

representations, it is very difficult to the machine recognize the meaning of those 

elements. 

Most of the times this handicap comes from the lack of background knowledge of 

the machine. In the previous example, we know that if something has a name and 

has some information about a scholar position, it is probable that this scholar 

position is of the person referred by the name.  Although it is easy to make this 

assertion by a person, this task is difficult for a machine. Even if the machine can 

identify that a portion of text is a name or a scholar position, how can it determine 

that a scholar position is normally related to a person if that information is not 

stated anywhere? This is where the Semantic Web enters. 

Envisioned in 1998 (Tim Berners-Lee 1998) by Tim Berners-Lee, the inventor of 

the WWW and HTML, the Semantic Web tries to fill the knowledge gap between 

human and machine. The main objective of the Semantic Web (T. Berners-Lee, J. 

Hendler, and Lassila 2001) is to “bring structure to the meaningful content of Web 

pages, creating an environment where software agents roaming from page to page 

can readily carry out sophisticated tasks for users.” With that meaningful knowledge, 

software agents while reading a page can not only assert the keywords and links of 

the document, like today search engines, but also complex relations between the 

elements of the page, just like those described in the later example. 

This Semantic Web is not intended to be apart from the current Web. There is no 

effort on making a new Web, where all the information is somehow more intelligent 

and structured than it is today. The Semantic Web is not a separable Web, but an 

extension to the current one. In the future Web, there will coexist “normal” Web 
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5
 http://www.sas.com/ 
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Pages and Semantic Web pages, with the only difference being the later ones more 

complete to the desires of the user. This way, Semantic Web is trying to expand a 

web of documents for people with a web of information for machines. 

To realize this vision it is necessary to formalize technologies, tools, and standards 

that provide the ability to incorporate meaningful information onto Web pages. 

Those technologies need to express both data and rules for reasoning about data, 

allowing machines to execute complex tasks and better cooperate with humans. In 

the next sections, these technologies are described. 

2.4.2. Semantic Web Architecture 

As stated before, a set of technologies, tools, and standards is needed to realize the 

Semantic Web vision. A Layered Architecture (Tim Berners-Lee 2000), composed by a 

series of standards structurally organized, was proposed (Figure 6). In this 

architecture, interrelationships of growing complexity between standards are 

structurally represented.  

 
Figure 6. Semantic Web layered architecture (adapted from (Tim Berners-Lee 2000)).   

Its foundation is composed by Unicode and URI, both responsible for the 

identification of resources. Above, there are 3 layers of representation: 

XML+XMLSchema that provides a syntactic operability layer, letting users write 

structured Web documents with a user-defined vocabulary; the RDF+RDFSchema 

layer defines a basic data model  to write statements about resources using XML; 

and the Ontology Vocabulary, composed  of a more complex representation of 

knowledge. At the top, the most complex layers: Logic, Proof, and Trust. Some layers 

rely on Digital Signatures to ensure security. In the next sections, all of these layers 

are explained. 

2.4.3. URI and Unicode 

Before explaining URIs and Unicode, it is useful to define the most basic unit in the 

Semantic Web: the resource. A resource (Breitman, Casanova, and Truszkowski 2006) 

is “anything that has an identity, be it a retrievable digital entity, a physical entity, or 
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a collection of other resources”. All the information in the Semantic Web is 

represented as resources. So, it is necessary to define a language to refer to those 

resources. 

A Universal Resource Identifier (URI) (Berners-Lee  2005) is a formatted string that 

globally identifies an abstract or physical resource. The most used type of URI is the 

Universal Resource Locater (URL), which identifies resources via an abstract 

identification of the resource location (e.g., http://student.dei.uc.pt/pcoliv). 

URIs can have a fragment identifier attached, preceded by a #, meaning that a 

resource is subordinated to another, primary resource. In the Semantic Web these 

are normally used to identify resources in the same namespace, and are usually 

called URIRefs (URI References) or Hash URIs (Sauermann and Cyganiak 2008). For 

example,  http://student.dei.uc.pt/pcoliv#a and http://student.dei.uc.pt/pcoliv#b 

means that that resources a and b are in the same namespace, 

http://student.dei.uc.pt/pcoliv. 

URIs can be used in two ways: by using the absolute URI that identifies a resource 

independently of the context in which the URI appears (e.g.,  

http://student.dei.uc.pt/pcoliv#a); or by using a relative URI with some prefix, 

previously declared, omitted (e.g., pcoliv#a). 

To promote interoperability between knowledge sources in the Semantic Web it 

is necessary that all the parts involved use the same encoding to refer to resources. 

This is done by using Unicode (The Unicode Consortium 2006), an encoding system 

that provides a unique number for every character, independently of the platform, 

program, or language.  

2.4.4. XML 

The Extensible Markup Language (XML) (Antoniou and Harmelen 2008) is a general-

purpose markup language, designed to describe structured documents. In contrast 

to HTML, users can construct their own tags in XML (e.g., <scholar_position>). XML 

does not provide semantics indicating how to visualize documents. It is a language 

more suitable to machines, being normally used in data integration, interoperability, 

and exchange tasks (Cardoso 2007). 

A XML document is composed of plain text and markups (in the form of tags). The 

example from Section 2.4.1 can be easily represented in XML: 

 

1. <?xml version=“1.0” encoding=”UTF-8” ?> 

2. <page> 

3. <person personid=”http://student.dei.uc.pt/pcoliv"> 

4. <name>Pedro Oliveira</name> 

5. <scholar_position>MSc Student in Informatics Engineering</scholar_position> 

6. <address>University of Coimbra, Portugal</address> 

7. </person> 

8. </page> 
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A XML document usually starts with a preprocessing instruction (line 1) defining 

some general parameters like the XML version and encoding, being followed by a set 

of elements consisted by a start tag (e.g., <name>), the content (e.g., Pedro Oliveira) 

and an end tag (e.g., </name>). Elements can be nested, like <name> is nested in 

<person>, being a valid XML document a balanced tree of nested elements (Figure 

7). An element can have one or more name-value pair attributes inside the opening 

tag, like personid=”http://student.dei.uc.pt/pcoliv" in <person>. 

 
Figure 7. XML document tree of the previous XML example. 

To be considered a well-formed XML document, the document must satisfy some 

syntactic constraints defined in a formal grammar, such as every start tag must have 

an end tag, attributes within an element have unique names, among others 

(Antoniou and Harmelen 2008). Besides those restrictions, users can impose its own 

restrictions in the structure of the document using a Document Type Definition (DTD) 

(Antoniou and Harmelen 2008). 

A DTD is a XML-based language used to design constraints on the construction of 

a XML document. Using DTD, users can define all possible elements, their attributes, 

and even the allowed structure of a XML document. A simple DTD of the previous 

example can be easily defined: 

 

1. <!ELEMENT page (person+)> 

2. <!ATTLIST person 

3. personid CDATA #REQUIRED 

4. > 

5. <!ELEMENT person (name)> 

 

In this DTD, each page can have one or more persons (line 1). Each person must 

have an attribute personid (lines 2-4), and one name element (line 5).  

XMLSchema (Antoniou and Harmelen 2008) offers a significantly richer language 

for defining the structure of XML documents. The main innovation comparing to DTD 
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is that XMLSchema uses a pure XML language to express the constraints on the 

structure. XMLSchema support the same restrictions of DTD, adding some other 

features like support for basic data types, constraints on attributes, sophisticated 

structures and the use of namespaces to allow the combination of multiple schemas. 

The same restrictions of the previous DTD can now be stated in XMLSchema: 

 

1. <xsd:schema 

2. xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema” 

3. version=”1.0”> 

4. <xsd:complexType name=“page”> 

5. <xsd:element name=”person” minOccurs=”1”> 

6. </xsd:complexType> 

7. <xsd:complexType name=“person”> 

8. <xsd:attribute name=”personid” type=”string”> 

9. <xsd:element name=”name”> 

10. </xsd:complexType> 

11. </xsd:schema> 

 

2.4.5. RDF 

In the last section, we have seen that XML is a very good choice to express 

knowledge in a structured way. It provides a general framework, with a consistent 

syntax, for interchange of data and metadata between applications.  However, XML 

does not provide any way of adding meaning (i.e., semantics) to the data. By nesting 

elements and defining properties, meaning is not being associated to those 

elements. They are just being structured; each application decides how to interpret 

those elements. 

Resource Description Framework (RDF) (Breitman, Casanova, and Truszkowski 

2006) (Antoniou and Harmelen 2008) is a data model proposed to fulfill the need of 

giving meaning to XML structured information. An RDF document is composed by a 

set of statements. Each statement is a triple composed of:  

• Subject, the resource which the statement refers;  

• Predicate, also called property, describing relations between resources;  

• Object, which represents the value of the property, and can be a resource or 

an atomic value called literal.  

There are two common ways of textually representing statements: triples of the 

form (Subject, Predicate, Object) or in a functional style with binary predicates 

Predicate(Subject, Object). Both are used interchangeably in this work. Visually, a 

statement can be seen as a directed graph (DAG). 
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Figure 8. Visual representation of a RDF statement. 

Since a RDF document is a set of statements, visually it is also a DAG. For example, 

the DAG of three statements modeling the domain presented in Section 2.4.1 can be 

seen on Figure 9.  

 

1. Name(http://student.dei.uc.pt/pcoliv#me, ”Pedro Oliveira”) 

2. Course(http://student.dei.uc.pt/pcoliv#me, http://www.dei.uc.pt/courses#msc_ie) 

3. University(http://www.dei.uc.pt/courses#msc_ie, http://www.uc.pt/univ#us) 

 

 
Figure 9. Visual representation of three RDF statements. 

Although graphs and triples/functions are useful representations to human 

understanding, they are not so convenient to the storage, retrieval, and exchange of 

documents between machines. So, usually, RDF documents are stored in XML: 

 

1. <!DOCTYPE rdf:RDF [ 

2. <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#"> 

3. ]> 

4. <rdf:RDF 

5. xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

6. xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

7. xmlns:uni="http://www.university.org/uni-ns#"> 

8. <rdf:Description rdf:about="http://student.dei.uc.pt/pcoliv#me"> 

9. <uni:Name>Pedro Oliveira</uni:Name> 

10. <uni:Course rdf:resource="http://www.dei.uc.pt/courses#msc_ie"/> 

11. </rdf:Description> 

12. <rdf:Description rdf:about="http://www.dei.uc.pt/courses#msc_ie"> 

13. <uni:University rdf:resource="http://www.uc.pt/univ#us"/> 

14. </rdf:Description> 

15. </rdf:RDF> 
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First, document type (lines 1-3) and available namespaces (lines 4-7) are declared. 

Resources belonging to declared namespaces can be identified by a relative URI (e.g., 

rdf:Description instead of http://www.w3.org/1999/02/22-rdf-syntax-

ns#Description). Statements are described in rdf:Description elements, using 

rdf:about to define the Resource, and representing the Predicate and Object as XML 

tags (lines 9-12 and 14-16). To refer an object that is also a resource (i.e., it is not a 

literal), we use the property rdf:resource (lines 11 and 15). 

RDF is a very flexible data model, letting users describe resources using their own 

vocabulary. It does not provide any means for defining domain specific classes and 

properties. The only defined property is rdf:type, which defines the type of any 

object in the domain. Therefore, a way is needed to define the possible terms used 

to specify the resources, properties and values referred on RDF statements, and the 

way resources can be related to each other. 

RDF Schema (RDFS) (Antoniou and Harmelen 2008) is an extension to RDF 

providing a vocabulary to specify classes (rdfs:class) and their relations 

(rdfs:subClassOf), properties (rdfs:property) and their relations (rdfs:subPropertyOf), 

literals (rdfs:literal), annotations (rdfs:comment and rdfs:label), property restrictions 

(rdfs:range and rdfs:domain), among others. This way, users can define classes, 

individuals and properties in a simple hierarchical structure, using a global agreed 

vocabulary. 

RDFS is fully compatible with RDF, being a well formed RDFS document also a 

valid RDF document. So, RDFS can also be represented in XML in the same way as 

RDF. 

2.4.6. Ontology Vocabulary 

The expressivity of RDF and RDFS is very limited. RDF only provides a simple 

vocabulary to express structured knowledge, while RDFS is limited to model 

hierarchies with simple restricted properties. However, more expressivity is needed 

to model some complex domains. One of the ways to provide this expressivity is by 

using ontologies. 

An ontology can be easily defined (James Hendler 2001) as a set of knowledge 

terms for some particular topic, including the vocabulary, semantic interconnections 

and rules of logic/inference of those terms. In general, ontologies provide a shared 

and common understanding of a domain that can be communicated between people 

and/or machines (Wahlster, Lieberman, and James Hendler 2002). They are normally 

used to make explicit conceptualizations that describe the semantics of the data with 

the intuition of reasoning about that data. 

The most prominent markup language proposed by the W3C to model ontologies 

in the Semantic Web is the Web Ontology Language (OWL) (Breitman, Casanova, and 

Truszkowski 2006) (Antoniou and Harmelen 2008). OWL, just like RDF and RDFS, is 

defined as a vocabulary, but with stronger semantics than its predecessors. Some of 

the new relations are, for example, the inclusion of special properties 
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(owl:TransitiveProperty, owl:SymetricProperty, owl:FunctionalProperty, and 

owl:InverseFunctionalProperty), enumerations (owl:oneOf), versioning information 

(owl:versionInfo ), logical properties (owl:intersectionOf, owl:sameAs, and 

owl:differentFrom), among others. 

However, more expressivity means more complexity. So, there are currently three 

sublanguages in OWL, each one with a different complexity: 

• OWL Full is OWL with no restrictions. It is fully compatible with RDF/S, both 

semantically and syntactically. The problem is that the language makes the 

reasoning over it undecidable (i.e., some statements cannot be shown to be 

either true or false), making almost impossible a complete (or efficient) 

reasoning. 

• OWL DL is a sublanguage of OWL that tries to restrict it to the well known 

Description Logic SHOIN(D) (Baader et al. 2007). This logic is known of 

being both decidable (all computations will finish in finite time) and complete 

(all conclusions are guaranteed to be computable), making its reasoning 

possible, at least in theory. Those restrictions are made by disallowing the 

applications of constructors between classes. The problem with this 

sublanguage is that it is not fully compatible with RDF. The applied 

restrictions force to make some changes in a valid RDF document to be 

considered a legal OWL DL document. However, a legal OWL DL document is 

also a legal RDF Document. 

• OWL Lite is an even more restricted version than OWL DL, corresponding to 

the Description Logic SHIF(D). By excluding enumerated classes, disjoint 

statements and arbitrary cardinality, a more easy (for both human and 

machine) sublanguage is created. Although, the expressivity is largely 

reduced compared to the other OWL sublanguages. 

These three sublanguages create an internal sub layer in the Ontology Vocabulary 

layer in the Semantic Web Architecture (Figure 10). This sub layer shows an upward 

compatibility (e.g., an OWL Lite ontology is also a valid OWL DL one) of growing 

complexity. 

  
Figure 10. OWL sub layer. 

More recently, a new extension to OWL, called OWL2 (Grau et al. 2008) has been 

proposed. This new language extends OWL DL with a new set of features that have 
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been requested by users. Extra syntactic constructors like owl:DisjointUnion and 

owl:DisjointClasses, new constructors for properties (e.g., owl:ReflexiveProperty and 

owl:AssymetricProperty), extended datatypes capabilities, and new annotating 

features are some of the new features. Its Description Logic, SROIQ(D), is also 

sound and complete. 

2.4.7. Logic 

One of the most powerful capabilities of the Semantic Web is reasoning, i.e., derive 

new facts and relations from existing knowledge. The main mechanism behind this 

reasoning is logic (Section 2.1). In fact, the biggest advance made by the Semantic 

Web is to add logic to the current Web, providing agents with the capability of using 

rules to make inference, choose courses of action and answer questions. 

Take for example the three RDF statements of Figure 9. An agent confronted with 

this knowledge will infer that Pedro Oliveira is connected to the University of 

Coimbra through his MSc course, i.e., the MSc course serves as a transitive path 

between Pedro Oliveira and the University of Coimbra. So, when asked about 

individuals in the University of Coimbra, the agent will return Pedro Oliveira, even if 

that information is not explicitly represented. 

As seen in the previous section, the semantics of some OWL languages are based 

on Description Logics (see Section 2.1.4), a well studied group of logical languages. 

Even if OWL Full does not have a predefined logic, it can be interpreted as belonging 

to the set of high-order languages (S. Shapiro 2001), which are very expressive 

logical languages that usually do not provide either sound or complete reasoning. 

These OWL languages allow us to understand one of the most important conclusions 

of logic as a knowledge representation mechanism: the difficult of reasoning 

increases with the expressive power (Levesque and Brachman 1985). Since there is a 

tradeoff between the expressiveness of the representation language and its 

computational tractability, there is an increasing need in finding logical languages 

that are expressive enough, but remain with some interesting capabilities like 

soundness and completeness. The Semantic Web community has been extensively 

researching on this theme, and the new language, OWL2 (Grau et al. 2008), is one of 

these attempts.  

2.4.8. Digital Signatures, Proof and Trust 

As stated in the previous section, reasoning is one of the most important capabilities 

of the Semantic Web. However, different reasoners can produce different results. 

Since in a fully distributed Semantic Web most of the time the reasoning could be 

made in a different machine than ours, for example using a Semantic Web Service 

(SWS) (Cardoso 2007), how can agents trust that the inference process was reliable 

and the result is what they were expecting? For example, if there is a SWS that gives 

the address of a person given its name, how can an agent be sure that the returned 
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address is from the people that he want and not from another person with the same 

name? 

This can be done by accompanying the results with a justification that allows the 

receiving agent to assert the quality of the results. This is the purpose of the Proof 

layer. One of the proposed languages to describe justification of results in the 

Semantic Web is the Proof Markup Language (PML) (Silva, McGuinness, and Fikes 

2006), using OWL to exchange proofs between machines.  

Trust is the top layer of the Semantic Web architecture. Since anyone can 

contribute to the Semantic Web, some form of trustworthiness must be given to the 

information. This can be achieved by using Digital Signatures (e.g., public key 

cryptography), trusted agent recommendations, and ratings from certificated 

agencies. This way a Web of Trust (Matthew Richardson, Agrawal, and Pedro 

Domingos 2003) could be created, were agents can be aware of the credibility and 

reliability of statements, presenting the most relevant information to the user. 

2.5. Markov Logic 

Handling uncertainty and complexity in the same representation has been a long 

goal of Artificial Intelligence. Markov logic is a novel language that provides that 

capability, joining in the same representation probabilistic graphic models (Markov 

networks) to handle uncertainty, and first-order logic to handle complexity. By 

attaching weights to first-order logic formulas, a Markov logic network can be built. 

This network can be used as a template to construct Markov networks, providing the 

full expressiveness of probabilistic graphical models and first-order logic. 

In the next sections, Markov logic representation and capabilities are described.  

2.5.1. Markov Logic Networks 

Markov logic (M. Richardson and P. Domingos 2006) (Pedro Domingos, Stanley Kok, 

et al. 2008) combines first-order logic and Markov networks in the same 

representation. The main idea behind Markov logic is that, unlike first-order logic, a 

world that violates a formula is not invalid, but less probable. This is done by 

attaching weights to first-order logic formulas: the higher the weight, the bigger is 

the difference between a world that satisfies the formula and one that does not, 

other things been equal. Using these weighted formulas, a Markov logic network can 

be built. 

A Markov logic network (MLN) (M. Richardson and P. Domingos 2006) m is a set of 

pairs ���, E�� where �� is a formula in first-order logic and E� is a real value 

representing the weight of the formula. If a set of constants � ? QkR, … , kTU is 

provided, a Markov network +n,o can be defined as follows: 

• A binary node is created for each possible grounding of each atom in L, being 

its value 1 if the ground atom is true, 0 otherwise. 
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• Each possible grounding of each formula �� in L generates a distinct feature, 

being its value 1 if the ground formula is true, 0 otherwise. The weight of the 

feature is the E� associated with the formula. 

This way, it is created a node for each ground atom and an edge if two ground 

atoms appear in the same formula. Suppose a simple MLN with two formulas. 

 

Formula Weight $ ' ����1�� � /	(*���� 3 

$$� ' �	(A�/�	���	*�, �� � ����1��  � /	(*����� 1.5 

Table 8. Markov logic network example. 

Using the previous algorithm, if we have two constants, Anna and Bob, the 

resulting Markov network has eight variables, corresponding to eight grounded 

atoms. 

 
Figure 11. Markov network, with an example feature, built from the previous Markov logic network. 

An MLN can be viewed as a template to construct Markov networks. With 

different sets of constants, different Markov networks are created. However, all of 

those networks have some kind of similarity in the structure or in the parameters. 

For example, all the groundings of a formula have the same weight, making the 

Markov networks of the different groundings of the same formula similar in 

structure. These grounded networks are called grounded Markov networks. 
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The probability distribution of a ground Markov network can be defined as 

/�O ? � ? 1P � 2 pV E�����q

�WR
r , 2.11 

where � is the number of formulas in the MLN, ���� is the number of true 

groundings of �� in the world , and E� is the weight of ��.  

Markov logic can easily represent many of the models usually used in Artificial 

Intelligence. For example, an MLN with only grounded formulas is a Markov network, 

and an MLN with all the weights equal and tending to infinity is a first-order logic 

knowledge base. Other models that use products of potentials, like Bayesian 

networks, can also be represented in Markov logic (M. Richardson 2004). 

There are two main tasks that can be done by MLNs: inference and learning. 

2.5.2. Inference 

Since MLNs create Markov networks, the inference algorithms presented in 

Section 2.2.3 can be used in Markov logic. However, given the specific properties of 

MLNs, more efficient algorithms were developed. Most probable explanation (MPE) 

and maximum a posteriori (MAP) queries reduce to find the truth assignment that 

maximizes the sum of weights of satisfied clauses. This can be done using 

MaxWalkSAT (Selman, Kautz, and Cohen 1993), a local-search weighted satisfiability 

solver algorithm. However, this algorithm consumes many resources in sparse 

domains, since it requires the full grounding of the MLN. Lazy versions of 

MaxWalkSAT, like LazySAT (P. Singla and P. Domingos 2006a), solve this problem by 

gradually grounding the MLN when its distinct parts are needed. 

Another inference task is to find the marginal and conditional probabilities of a 

formula given an MLN and possibly other formulas as evidence. Since a probability of 

a formula is the sum of the probabilities of the world where it holds, the more 

ground atoms exist, the more difficult is the task. Approximate inference algorithms, 

like the previous referred Markov Chain Monte Carlo (MCMC) (Section 2.2.3), are 

usually used. However, MCMC is not efficient in domains where formulas with 

deterministic or near-deterministic dependencies exist (e.g., formulas with infinite 

weight) because these areas of the search space can be very difficult to traverse by 

simple flipping the value of the non-evidence variables. To solve this problem, we 

can use MC-SAT (H. Poon and P. Domingos 2006), a combination of MCMC and the 

SampleSAT satisfiability solver (Wei, Erenrich, and Selman 2004). MC-SAT uses slice 

sampling to help capturing the dependencies between variables, allowing jumping 

from these difficult areas. 

2.5.3. Learning 

There are two things that can be learned in a MLN: parameters (i.e., the weights) 

and structure (i.e., the features). Both types are learned from example data. 
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Weights can be learned generatively by maximizing the pseudo-likelihood (Besag 

1975) of the data. This is done by adjusting the weight of each variable by the 

likelihood of the variable and his neighbors with the given data. If the model predicts 

that a feature is true less often than it really is in the data, then the weight is 

increased; otherwise, it is decreased. Since this procedure is made taking only in 

account the variable and his neighbors, sometimes weights can be overestimated. A 

solution when it is known a priory which atoms will be evidence and query is to use 

discriminative learning (P. Singla and P. Domingos 2005). It uses a similar approach 

to the former, but only takes in account the evidence and query atoms to do the 

learning, maximizing the conditional likelihood of the query predicates.  

Features can be learned from an empty knowledge base (KB) or from an existing 

KB (making possible to refine an existing KB). The idea is to add all the single atoms 

to the MLN and iteratively try to joining them until finding an MLN that maximizes a 

certain evaluation metric based on the provided data. This evaluation can be done by 

using a weighted version of the already defined pseudo-likelihood algorithm. Since 

this is a very intensive task, some improvements (S. Kok and P. Domingos 2005) are 

made to reduce the number of calculations, normally using approximation 

techniques that avoid the update of all the weights in each iteration. Instead of 

randomly joining atoms, relationship graphs between variables can be used to guide 

the learning (Mihalkova and Mooney 2007). 

2.6. Related Work 

This section is dedicated to related work in the field of reasoning in the Semantic 

Web. There are three main research themes relevant to this topic: deterministic 

reasoning in the Semantic Web, the most researched area by the Semantic Web 

reasoning community; uncertainty in the Semantic Web, where probabilistic 

reasoning is applied to the Semantic Web; and vagueness in the Semantic Web, 

where Semantic Web languages are extended with fuzzy logic concepts. At the end 

of this section, a summary with our most relevant conclusions about the related 

work is provided. 

2.6.1. Deterministic Reasoning in the Semantic Web 

Since Semantic Web languages like RDF and OWL are based on crisp logic, 

deterministic reasoning is the main area of research in Semantic Web reasoning. In 

this section are presented some of the best reasoners in this area. 

Most of the reasoners in this section use tableau-based (also called tableaux) 

decision procedures for inference (Ralf Moller and Volker Haarslev 2008). These 

methods check the satisfiability (i.e., if there is an assignment of variables that make 

a statement evaluate to true) of an ontology by constructing a graph representation 

from the logical model of the ontology. This way, satisfiability can be checked by 

traversing the graph and checking for inconsistencies. This graph representation is 
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also useful to do more complex tasks, like concept satisfiability, classification, 

realization, and individual retrieval. 

One of the most used reasoners is Pellet
6 (Sirin et al. 2007), an open source Java 

OWL DL Reasoner. It provides sound and complete reasoning with OWL DL, being 

capable of reasoning with assertional and terminological knowledge. It also provides 

reasoning with user defined datatypes, support for ontology debugging and 

integration with rules formalisms like Semantic Web Rule Language
7 (SWRL). It uses 

tableau Description Logic algorithms for consistency checking, making possible OWL 

DL concept satisfiability, classification, and realization. 

FaCT++
8 (Tsarkov and Ian Horrocks 2006) is a Description Logic reasoner 

supporting OWL DL and OWL2. It is an open source reasoner made in C++. The main 

characteristics of FaCT++ are the use of highly optimized tableau algorithms, making 

it a very efficient assertional and terminological knowledge reasoner. Reasoning in 

FaCT++ is segmented in two tasks: preprocessing, when the ontology is loaded and 

some rewriting optimizations are made; and classification, where the taxonomy of 

named concepts is calculated using satisfiability checking techniques. 

(Stocker and Smith 2008) proposed Owlgres
9, an open source scalable reasoner 

for OWL2 DL-Lite. It provides efficient reasoning and querying over scalable 

persistent data storages, like relational database managements systems (RDBMS) 

(e.g., PostgreSQL
10). By combining Description Logic reasoning techniques with 

efficient data management and retrieval of RDBMS, Owlgres provides conjunctive 

query answering using a subset of SPARQL
11, SPARQL-DL, transforming SPARQL 

queries in SQL queries. 

SHER
12 (Scalable High Expressive Reasoner) (Dolby et al. 2007) is an OWL DL 

reasoner developed by IBM
13. It is optimized to high performance reasoning over 

millions of facts in OWL DL ontologies. It is mainly used to answer conjunctive and 

membership queries over ontological resources. Its high performance is obtained by 
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summarizing ontological data into a very compact representation, and by refining 

this data by filtering unnecessary facts to the queries. 

Hermit
14 (Boris Motik, Shearer, and Ian Horrocks 2007) is a Java OWL reasoner 

that uses a novel approach to Description Logic reasoning.  This novel approach, 

called hypertableau reasoning, is a hybrid of resolution and tableau algorithms, being 

more efficient in some subsets of OWL ontologies. 

KAON2
15 (Boris Motik and Ulrike Sattler 2006) is an OWL DL management system 

that provides efficient Description Logic reasoning. Unlike most of the Description 

Logic reasoners, KAON2 does not use any tableau methods. Instead, the ontology is 

reduced to a disjunctive Datalog program and the inference is made in this 

representation. This way, some well know deductive database techniques like magic 

sets and join-order optimization can be applied in OWL DL reasoning, improving the 

results on answering some types of queries. 

RACER
16 (Renamed ABox and Concept Expression Reasoner) (V. Haarslev and 

Möller 2003) is a Description Logic reasoner that can be used to reason over OWL DL 

ontologies. RACER uses optimized tableau calculus algorithms, supporting tasks like 

satisfiability, consistency, subsumption, and querying of ontological resources. The 

commercial version, RacerPro
17, also supports rules using SWRL and can be used as 

an HTTP reasoning server. 

(Tsarkov et al. 2004) describe work on using Vampire
18 (A. Riazanov 2002), a 

general purpose first-order logic (FOL) reasoner, to reason with OWL DL. Since OWL 

DL is a subset of FOL, the authors translate the ontology to FOL and apply FOL 

reasoning techniques to it. They also translate SWRL rules into FOL and reason with 

those rules. The results were not as good as a general Description Logics reasoner, 

but since FOL is way more expressive than OWL DL, this approach can be useful in 

some more restrictive tasks, like testing and debugging of new tests. 
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2.6.2. Uncertainty in the Semantic Web 

Some domains are uncertain by nature. Since Semantic Web languages, like OWL 

and RDF, are based on crisp logic, it is very difficult, if not impossible, to represent 

those domains in the Semantic Web. Most of the times, this uncertainty comes from 

our incapacity of asserting the veracity or falsity of a statement. This uncertainty is 

usually represented by a probability, i.e., a quantity representing our uncertainty. 

There are currently two distinct approaches (Thomas Lukasiewicz and Umberto 

Straccia 2008) to add probabilistic knowledge in the Semantic Web: Probabilistic 

Description Logics tries to expand and modify the logic behind Description Logics 

with probabilistic knowledge; and Probabilistic Semantic Web Languages which tries 

to combine Semantic Web languages with probabilistic formalisms like Bayesian 

networks. 

Probabilistic Description Logics 

The most expressive Description Logic with probabilistic knowledge is P-
SHOIN(D) (T. Lukasiewicz 2008) (Klinov and Bijan Parsia 2008). P-SHOIN(D) 
is a probabilistic extension to SHOIN(D), the Description Logic behind OWL DL. 

Probabilities are represented by a new kind of axiom, called conditional constraints. 

Conditional constraints are composed by expressions of the form (D|C)[l,u], where D 

is the evidence, C the conclusion, and [l,u] is a probability interval. There are two 

types of conditional constraints: generic constraints, representing probabilistic 

relations between classes; and individual constraints, representing probabilistic 

information about the belonging of individuals to certain classes. Currently, there are 

two reasoners that implement this Description Logic: Pronto
19 (Klinov 2008), a 

probabilistic OWL reasoner developed by the Pellet team, and ContraBovemRufum
20 

(Nath and R. Moller 2008), a simple OWL probabilistic reasoner built on top of Racer. 

Recently, a tool21 for the evaluation of probabilistic Description Logic reasoners was 

also developed. Since OWL Lite is a subset of OWL DL, its Description Logic, 

SHIF(D), can also be extended with probabilistic knowledge, P-SHIF(D) (T. 

Lukasiewicz 2008). 
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Very similar to the previous work is P-SHOQ(D) (Giugno and Thomas 

Lukasiewicz 2002). This Description Logic is based on SHOQ(D), a Description Logic 

very similar to SHOIN(D). The only difference between them is that SHOQ(D) 

does not allow inverse properties. 

There are also other Description Logics augmented with probabilistic knowledge, 

but none of those have the needed expressivity to comport the expressiveness of 

Semantic Web languages. An overview can be found on (Thomas Lukasiewicz and 

Umberto Straccia 2008). 

Probabilistic Semantic Web Languages 

Since the emergence of the first Semantic Web languages, some work has been done 

in representing probabilistic knowledge in those languages. Most of this work tries to 

add probabilistic capabilities to those languages without changing their logical 

foundations or their syntax, by combining them with known probabilistic formalisms. 

In (Fukushige 2005) is proposed a simple vocabulary to represent probabilistic 

knowledge in RDF. This vocabulary is composed by a set of classes and properties 

representing elements of Bayesian networks, making possible to link RDF statements 

to those elements. This way, marginal and conditional probabilities about 

statements can be easily represented and reasoned using Bayesian networks. pRDF 

(Udrea, Subrahmanian, and Majkic 2006) is a formal probabilistic extension to a 

subset of RDF/S, allowing probabilistic knowledge about classes and properties of 

individuals. Unlike the previous work, pRDF implements its own probabilistic logic, 

making possible to reason over assertional knowledge in acyclic RDF graphs. (Holi 

and Hyvönen 2006) presented a framework for representing uncertainty in simple 

RDFS taxonomies. They were particular interested in computing the degrees of 

subsumption, i.e., overlap, between concepts. By attaching weights, called masses, 

to concepts, a Bayesian network is built. Using the Bayesian network prior and 

conditional probabilities, an overlap table between concepts is easily built by using 

evidence propagation algorithms. 

PR-OWL
22 (Costa and Laskey 2005) is a probabilistic generalization of OWL based 

on multi-entity Bayesian networks (MEBNs) (Laskey and Costa 2005). MEBN logic 

combines Bayesian probability theory with first order logic, constructing Bayesian 

networks from parameterized fragments representing the probabilistic knowledge 

about a collection of related hypotheses. This way, probability distributions can be 

encoded in first-order theories. The main contribute of PR-OWL is the definition of 
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an upper ontology that guides the development of probabilistic ontologies in OWL 

using MEBNs.  

(Ding, Peng, and Rong Pan 2006) proposed BayesOWL, a framework to represent 

and reason OWL uncertain knowledge using Bayesian networks. They provide a set 

of rules and procedures to translate OWL DL concept taxonomies (i.e., class axioms 

and logical relations between classes) into Bayesian networks. The main idea in this 

translation is to transform all the classes in variables and all the predicates in arcs 

between the respective classes. Special variables are inserted to facilitate the 

modeling of relations between concepts, and to avoid cycles. A simple approach to 

annotate OWL DL statements with conditional and marginal probabilities is also 

provided, as methods to automatically construct and refine conditional probability 

tables. The resulting Bayesian network preserves the semantics of the original 

ontology, and supports ontology reasoning both within and across ontologies. This 

framework was successfully applied in ontology mapping tasks (Rong Pan et al. 

2005).  

Similar to the previous work is OntoBayes (Yang and Calmet 2005), which 

combines OWL and Bayesian networks. They provide a simple method to annotate 

OWL with conditional, marginal, and full disjoint probabilities. Unlike the previous 

work, the Bayesian network is not automatically built. Users must annotate in OWL 

the dependencies between variables. This way, users are not restricted to a subset of 

OWL, like BayesOWL, but have the burden of annotate more elements. Given the 

OWL ontology, the probabilities and dependency annotations, a Bayesian network is 

easily built, and the inference is made on it. (Gu et al. 2004) also propose a similar 

approach to the last one, being more focused on reasoning over uncertain contexts 

represented in OWL.  

(Henrik and Norbert 2006) describe work on probabilistic reasoning in two 

subsets of OWL Lite. They translate restricted OWL Lite ontologies into Datalog, a 

subset of first-order logic, and use a probabilistic extension of Datalog, pDatalog, to 

do probabilistic inference over the ontology. This approach was successfully used in 

automatic ontology matching tasks (Nottelmann and Umberto Straccia 2006). In 

(Predoiu and Stuckenschmidt 2007) a probabilistic framework for information 

integration and retrieval on the Semantic Web is proposed. Their approach uses 

Bayesian Description Logic Programs, a formalism that joins Description Logic 

Programs (DLP), a subset of Datalog without negation and without equality, with a 

fragment of Bayesian Logic Programs. In this representation, statements are 

translated to DLP rules with an attached probability. This way, a Bayesian network 

can be built from those annotated rules, providing a complete specification of the 

desired probability distribution. 

2.6.3. Vagueness in the Semantic Web 

Sometimes, real world domains are composed by imprecise or vague information. 

Again, Semantic Web languages are not ready to deal with this type of information. 
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For example, in those languages, how can we model the fact that some resource is 

“fast” or “tall”? 

The problem with this situation is that we are dealing with vague concepts, that 

are more or less true, but we do not have a precise definition of them. For example, 

saying that Ferrari is fast depends on the velocity of the Ferrari, but we cannot say 

that this statement is completely true or false because we do not know which 

velocity is considered fast (i.e., fast is a vague concept). One way of representing 

vague concepts is by assigning a value to them, saying that this concept is true to 

some degree represented by that value. For example, by saying that Ferrari is fast 

with the degree of truth 0.8, we are saying that Ferrari is relatively fast but not 

completely fast. 

One way of dealing with vagueness is by using fuzzy set theory and fuzzy logic (Klir 

and Yuan 1995). Instead of having a true/false value, statements with vague 

concepts have a truth value, usually between [0, 1], where 0 and 1 represents binary 

false and true, respectively. In the last years, many approaches have been proposed 

to extend Description Logics with fuzzy set theory. Next, the most relevant 

approaches to this work are described. For a more complete overview see (Sanchez 

2006) and (Thomas Lukasiewicz and Umberto Straccia 2008). 

(Stoilos et al. 2005a) propose f-OWL, a fuzzy extension to OWL DL. In this 

extension, degrees of truthiness are added to OWL facts, representing the fuzziness 

of those facts. When a fact does not have any degree, it is interpreted as a binary 

true fact (i.e., degree of 1). In this approach, OWL syntax must be changed to cope 

with the addition of the membership degree. The reasoning is made by a new logic, 

called f-SHOIN. This logic extends SHOIN (without datatypes) to deal with fuzzy 

set theory. (Stoilos et al. 2005b) also proposed f-SHIN, a simpler fuzzy description 

logic that is base of FiRE
23, a fuzzy reasoner for the Semantic Web. A more complete 

fuzzy extension of SHOIN was proposed by (U. Straccia 2006a). Although the 

principles are very similar, this approach subsumes the previous one, being capable 

of supporting all the OWL DL language. 

Another fuzzy Description Logic reasoner is fuzzyDL
24 (Bobillo and U. Straccia 

2008), a fuzzy extension to SHIF(D), the Description Logic behind OWL Lite. This 

reasoner supports various membership functions and distinct fuzzy logics, like Zadeh 

semantics and Lukasiewicz logic. This reasoner also supports classical Description 

Logic reasoning, being not restricted to fuzzy reasoning. In (U. Straccia 2006b), a 
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fuzzy extension to a restricted subset of OWL DL, called DL-Lite, is proposed. This 

extension, called f-DL-Lite, supports fuzzy queries over fuzzy knowledge bases. (J. Z. 

Pan et al. 2007) extended the previous work, proposing new query answer languages 

to query fuzzy knowledge bases, by extending SPARQL to support membership 

degrees. The work is implemented in ONTOSEARCH2
25, a search and query engine for 

the Semantic Web. 

2.6.4. Conclusions 

Through the analysis of the previous related work, some general conclusions can be 

made: 

• There is little work on dealing with uncertainty and vagueness in the Semantic 

Web. Even if these two areas are of the most importance to the future of the 

Semantic Web, only recently the scientific community has started to research 

them (the first publications about the subjects are from 2005). In the same 

year, a dedicated workshop about those subjects (International Workshop on 

Uncertainty Reasoning for the Semantic Web
26) was created; 

• Deterministic reasoning is more computationally efficient than all the other 

approaches. Some of the systems seen in Section 2.6.1 support efficient 

reasoning over millions of ontological facts, while other systems, like Pronto, 

are restricted to only hundreds of them. The main reason is that deterministic 

reasoning is the main area of research in Semantic Web reasoning, having 

already developed very efficient algorithms, mainly those based on tableau 

procedures. These algorithms were already being improved in other older 

fields, like Description Logics; 

• Probabilistic Semantic Web languages are, usually, more computationally 

efficient than the other uncertain and vague approaches. The main reason is 

that most of them use formalisms like probabilistic graphical models, which are 

well known and provide efficient reasoning mechanisms. Probabilistic and 

fuzzy Description Logics usually lack of efficient reasoning mechanisms, and 

their applications to real world domains are also not well studied; 

                                                      

 

 

 

 
25

 http://www.ontosearch.org/ 

26
 http://c4i.gmu.edu/ursw/ 



 

 

 
40 

 

• All the works on uncertainty and vagueness in the Semantic Web rely on the 

principle that the uncertainty or vagueness of the ontology is already asserted. 

To our knowledge, there is no work on extracting automatically this 

information from the ontology, or from other knowledge representations. 

However, there are many ontologies that are uncertain or vague by nature, but 

do not have any type of information denoting that fact. This fact leads to the 

need of develop efficient mechanisms to learn this information. 

• All the works on Probabilistic Semantic Web languages rely on probabilistic 

formalisms, like Bayesian networks, which do not allow cycles. However, in 

many domains, knowledge is cyclic (e.g., the relations FatherOf and SonOf are 

cyclic). This fact limits the usability and expressiveness of these approaches in 

real world domains. 

These conclusions identify the main problems and debilities of the related work. 

This information will be used in the definition of our proposed approach (Chapter 3).  
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3. Learning and Reasoning about Uncertainty 

in the Semantic Web 

The objective of this thesis is to study mechanisms to perform probabilistic reasoning 

in the Semantic Web (T. Berners-Lee, J. Hendler, and Lassila 2001). For this purpose, 

we use Markov logic (Pedro Domingos, Stanley Kok, et al. 2008), a novel 

representation formalism that combines logic and probabilistic graphical models, 

and ontologies represented in OWL2 (Grau et al. 2008), the Web Ontology language 

proposed by the W3C. Before explaining our approach, we first need to clarify why 

we are using Markov logic and OWL2. 

Why Markov Logic 

As noted in Section 2.4.6, the most relevant Semantic Web languages to describe 

ontologies are based on Description Logics (Baader et al. 2007). These Description 

Logics follow a model-theoretic semantics, and therefore can be usually interpreted 

as a set of formulas in first-order logic. To perform probabilistic reasoning over these 

languages, we need formalisms that allow first-order logic and probabilities. These 

formalisms must be also prepared to cope with domains with a high relational 

complexity, as the ones presented in the Semantic Web vision (T. Berners-Lee, J. 

Hendler, and Lassila 2001). These requirements lead us to the field of statistical 

relation learning (Lise Getoor and Ben Taskar 2007). In this field, there are two main 

approaches that combine the full power of first-order logic and probabilistic 

graphical models: Markov logic and Bayesian logic (BLOG) (Milch et al. 2007). 

Between those two, Markov logic was chosen for a set of reasons: 

• BLOG models are based on Bayesian networks, and therefore do not allow 

cycles. Since the Semantic Web domain is characterized by cyclic relations 

between entities (e.g., the relations FatherOf and SonOf are cyclic), this fact 

can restrict the use of BLOG in some ontologies. It is studied (Ding, Peng, and 

Rong Pan 2006) that these cycles can be removed by the introduction of 

auxiliary variables. However, this is a difficult task that increases the model 

complexity, and can be only used on a small subset of some Semantic Web 

languages; 

• Even if BLOG allows first-order knowledge, models are procedurally defined 

by programs, an unnatural way of defining first-order knowledge. To model a 

simple fact, complex constructors like guaranteed object statements and 

dependency statements must be declared, while in Markov logic it suffices to 

declare the first-order logic formulas of the domain, and their weights; 

• Several algorithms for learning and reasoning in Markov logic were studied 

(e.g., (P. Singla and P. Domingos 2005) (S. Kok and P. Domingos 2005) (P. 

Singla and P. Domingos 2006a) (H. Poon and P. Domingos 2006)). In BLOG 

only reasoning was deeply studied (Milch and S. Russell 2006) (Milch et al. 
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2008), and there is no work on learning the parameters or the structure of 

BLOG models. 

Why OWL2 

In Section 2.4.6, we presented four main Web Ontology language versions: OWL Lite, 

OWL DL, OWL Full, and OWL2. The last one was chosen for a set of reasons: 

• Just like OWL Lite and OWL DL, OWL2 is decidable. This fact is determinant in 

the search of efficient reasoning mechanisms; 

• OWL2 is a very expressive language, which subsumes OWL Lite and OWL DL; 

• OWL2 provides improved annotation mechanisms, making the annotation of 

axioms easier. Annotations are relevant in our domain, since it is the 

preferred way to attach uncertainty information to axioms; 

• Some of the most used Semantic Web tools, like Protégé27 and OWLAPI28, 

already support OWL2 and are encouraging the Semantic Web community to 

use this new language.  

From OWL to Markov Logic 

The first step in use Markov logic capabilities to reason about uncertainty in the 

Semantic Web is to transform Semantic Web’s representation languages, in our case 

OWL2, into Markov Logic Networks (MLNs). As seen in Section 2.5.1, a MLN is 

composed by a set of weighted first-order logic formulas. So, we must define where 

these formulas and weights come from. 

Formulas 

OWL2 is based on the Description Logic SROIQ(D) (Grau et al. 2008). One 

characteristic of Description Logic languages is that they follow a model-theoretic 

semantics (Baader et al. 2007), and therefore can (in most of the cases) be 

interpreted as formulas in first-order logic. The main idea behind this interpretation 

is that concepts correspond to unary predicates, roles to binary predicates, and 

individuals correspond to constants. In our case, SROIQ(D) can be easily 

interpreted as first order formulas. Table 9 provides some of these interpretations 

(see Appendix I for the full interpretation). 
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OWL2 Axiom First-order logic formula �0.�1�**
���BR, �Bs� $ ' �BR�� � �Bs�� 
D	��*(�(t�/	�2�	���
/B� $, �, & ' 
/B�, �� � 
/B��, &� � 
/B�, &� 
�1�**�**�	�(����B, �� �B��� 

Table 9. Examples of first-order logic interpretations of OWL2 axioms. 

Weights 

In the next sections, we explore several sources for acquiring weights (Figure 12). 

First, we explore the cases when the ontologies are already annotated with some 

kind of uncertainty values that can be interpreted as weights. If those values are 

already weights, the interpretation is straightforward, and no posterior processing is 

needed (Section 3.1). However, in the cases where those values are probabilities, we 

must transform them in weights (Section 3.1.1).  

Second, we explore the cases where ontologies do not have any type of 

uncertainty annotation available. If the ontology contains individuals, we can use 

those individuals to learn the weights using the weight learning capabilities of 

Markov logic (Section 3.2). In the cases where the ontologies do not have individuals, 

resources like textual corpus and web search engines can be used to learn individuals 

or derive automatically the probability of axioms (Section 3.3). 

 
Figure 12. Explored ontology weight sources. 

3.1. Probabilistic Reasoning in Uncertainty-annotated 

Ontologies 

Ontology axioms can be annotated with a value representing its uncertainty (usually 

a weight or a probability) (e.g., a certain class has X% probability of being subclass of 

another). This allows ontology engineers to build uncertain ontologies with their own 

knowledge about the domain. However, this kind of reasoning is not only interesting 

in this case. There are already domains with ontologies with some kind of 

uncertainty associated: 
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• In the field of ontology learning from text corpus (Maedche 2002), the 

resulting ontologies usually have a probability associated with the confidence 

on the asserted relation (e.g., based on the corpus, there is X% probability 

that two concepts are related); 

• In ontology mapping, alignment, and matching tasks (Euzenat and Shvaiko 

2007), most of the relations found between distinct ontologies are 

probabilistic (e.g., two concepts in two different ontologies are the same with 

X% probability); 

• Ontologies are being used to express user context when using a certain 

application (e.g., (Kersten and Murphy 2006)). For example, an application 

that recommends actions to the user can use ontologies to assert what are 

the most interesting concepts to the current context. This is usually done by 

assigning weights or probabilities to the ontology concepts and relations 

(e.g., in a word processor, when the user is writing about dogs, the concept 

Dog is X% more important than the concept Cat). 

Example 
Suppose we have a simple hand-made ontology (Table 10) that models a domain 

about birds and their capability to fly, composed by 3 classes (Bird, FlyingAnimal, and 

Penguin) and 2 individuals (Tim and Tweety). Given the translation to first-order logic 

in Table 11, using Markov logic we can query for the conditional probabilities of the 

ontology individuals fly: /u�1�(�-��(A�1�D(A�v ? 0.87 
/u�1�(�-��(A�1�DE�����v ? 0 

 

Axiom Weight 

�0.�1�**
���(	), �1�(�-��(A�1� 1.8 
�0.�1�**
��/��-0(�, ��A21�A���
���1�(�-��(A�1�� 10 
�0.�1�**
��/��-0(�, �(	)� 10 

�1�**�**�	�(���D(A, �(	)�  
�1�**�**�	�(���DE����, /��-0(��  

Table 10. Flying Animals ontology. 

 

First-order logic formulas Weight 

$ ' �(	)�� � �1�(�-��(A�1�� 1.8 
$ ' /��-0(��� � ¬�1�(�-��(A�1�� 10 
 $ ' /��-0(��� � �(	)�� 10 

�(	)�D(A�  
/��-0(��DE�����  

Table 11. Flying Animals ontology in first-order logic. 



 

 

 
 45 

 

3.1.1. Probabilities instead of Weights 

In most of the previously referred cases, the uncertainty is represented as a 

probability. In Markov logic, weights have a direct correspondence with probabilities 

if they are interpreted as log odds: 

E� ? 1�- 2�1 w 2� , 3.1 

where 2� is the probability of the formula F�, and wz its corresponding weight. 

However, if �� shares variables with other formulas, as typically is the case, this 

correspondence cease to hold, since the weight of �� is influenced not only by its 

probability, but also by the other formulas that share the same variable. In this case, 

the probabilities of all formulas collectively determine all the weights. One solution 

to this problem is to treat formulas’ probabilities as empirical frequencies and learn 

their weights using the algorithms of Section 2.5.3. For example, if we have the 

formula $ ' �(	)�� � �1�(�-��(A�1�� and we know that it is true in 99% of the 

cases, we create 99 individuals that are both Birds and FlyingAnimals, and 1 that is a 

Bird but not a FlyingAnimal, and then learn its weight with those individuals. 

However, this solution is unfeasible in large and complex domains for a set of 

reasons: 

• We have to create many individuals, especially if the domain has many types 

of individuals (we have to have distinct individuals for each one of the types) 

and/or we want to have a good approximation of the desired probability 

(e.g., in the previous example, if we had the probability 99.1%, we needed 

1000 Birds, 991 of them FlyingAnimals). The more individuals we have, more 

difficult is the weight learning; 

• We can have very difficult and complex formulas, making the translation to 

empirical frequencies very difficult to achieve (e.g., %$� ' ��� � ���� �
¬���� � /�, �� �  { ��; 

• It can be impossible to create a proper empirical frequency in cases when 

formulas contradict other formulas. For example, if we have $ ' ��� �
��� � ��� and $ ' ��� � ¬��� both with 100% probability, we cannot 

create a correct empirical frequency, because an individual of class � cannot 

be at the same time both � and ¬�. These types of formulas could arise in 

tasks like entity matching, where there could be contradictions between 

formulas and individuals. 

A better solution can be achieved by analyzing one of the weight learning 

algorithms used in Markov logic. The discriminative weight learning algorithm (P. 

Singla and P. Domingos 2005) maximizes the conditional likelihood of some query 

predicates taking only in account the evidence atoms X and query atoms Y.  
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The gradient of the conditional likelihood with respect to the weights is defined 

by 

}}E� 1�- /i��|� ? ���, �� w Bi~���, ���, 3.2 

where  ���, �� is the number of true groundings of clause ( in data, and Bi~���, ��� 
is the expected number of true groundings of clause ( according to the model, value 

that is approximated by the counts of the most probable state of y given x. The 

number of true groundings is acquired by counting the number of groundings of the 

clause that are true in the data in respect to the model. However, if we have the 

probability of the clause29
, this value can be easily calculated as 

���, �� ? k�0���(� X 2�, 3.3 

where k�0���(� is the total number of groundings of clause (, and 2� the probability 

of the clause. This way, instead of relying on the individuals to acquire the number of 

true groundings of the clause, we automatically calculate that value with the desired 

probability. 

This solution is more feasible than the previous one, since it needs fewer 

individuals (we only need one individual for each individual type) and can be applied 

in any type of first-order logic formula. 

Correctness Study 

In this section, we study the behavior of the proposed approach in comparison with 

the empirical frequency approach. The main objective is to check if the proposed 

solution derives the same results as the training by empirical frequencies. For this 

purpose, we created four example MLNs (Table 12), with 10 individuals each, where 

the formulas where annotated with probabilities. Next, we tested all the possible 

combinations of probabilities for those formulas, with increases of 0.1, and 

compared the weights generated by both approaches. As we can see in Table 13, 

both solutions provide very similar weights, verifying the correctness of the 

proposed approach. 

 

 

 

                                                      

 

 

 

 
29

 In Markov logic, formulas are usually transformed in clausal form, generating a set of clauses. In 

this case, the probability of the formula is equally divided by its clauses. 
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MLN First-order logic formulas 

1 $ ' ��� � ��� 
2 $ ' ��� � ��� � ��� 

3 
$ ' ��� � ��� 
$ ' ��� � ��� 

4 
$ ' ��� � ��� � ��� 
$ ' <�� � ¬��� 
$ ' ��� � <�� 

Table 12. Correctness study MLNs. 

 

MLN Mean Absolute Weight Difference 

1 0.0575 

2 0.025 

3 0.0625 

4 0.05 

Table 13. Correctness study results. Mean absolute weight difference is the arithmetic mean of the 

absolute difference between the weights generated by both solutions with the MLNs of Table 12. A 

small value indicates that both solutions are similar. 

3.1.2. Experimentation 

In this section, we present two probabilistic domains that can exploit the previously 

defined capabilities. First, we analyze a domain about gesture-based affective 

information recognition, where the probabilities where asserted by field experts. 

Next, we explore the applicability of Markov logic to reason with automatic learned 

ontologies. 

The Body Gesture Experiment 

One of the most interesting tasks in Affective Computing (Picard 1997) is to predict 

the affective state of a person based on its gestures. (Rehman Abbasi, V. Afzulpurkar, 

and Uno 2008) recorded the unintentional movements of students during a lecture, 

and manually labeled the movements in 7 gestures (Head Scratch, Nose Itch, Lip 

Touch, Eye Rub, Chin Rest, Lip Zip, and Ear Scratch), corresponding to 6 distinct 

affective states (Recalling, Satisfied, Thinking, Tired, Bored, and Concentrating). 

Based on their results, we developed a simple probabilistic ontology (Table 14). 
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Axiom Probability �0.�1�**
��G��)�k	��k�, :�k�11(�-� 1 
�0.�1�**
����(�:�*�, D�(�l(�-� 0.9 
�0.�1�**
��B��:0., D(	�)� 0.81 
�0.�1�**
��m(2D�0k�, D�(�l(�-� 0.8875 
�0.�1�**
��,�*���k�, ���(*�(�)� 0.775 
�0.�1�**
��m(2P(2, ��	�)� 1 
�0.�1�**
��B�	�k	��k�, ���k���	��(�-� 0.8333 

Table 14. Affective state prediction probabilistic ontology. 

Next, we defined several sets of individuals and used MC-SAT to perform nine 

probabilistic queries (Table 15). Some remarks about the results: 

• In the first six results, we can see that the probabilities are similar to those 

expressed in the ontology. The residual differences are derived by the fact 

that both learning and reasoning are made using approximate algorithms; 

• Result number 2 gives a probability 0.07 less than the desired probability of 

0.9. This is not only derived by the use of approximate algorithms, but also by 

the fact that there is other axiom that leads to the conclusion Thinking (axiom 

number 4). Since we do not know if this individual also belongs to the class 

LipTouch, there is a small probability that axiom 4 is also true, and since that 

axiom contains a smaller weight, the final probability decreases. The inverse 

occurs in result number 4, where the probability increases in comparison to 

the expected probability. 

• As expected, the probability of result number 8 is greater than the ones with 

its assertions alone (results 2 and 4). 

 

Set 

Number 

Assertions Queries and Results 

1 �1�**�**�	�(����, G��)�k	��k�� :�k�11(�-��� ?  0.96 
2 �1�**�**�	�(����, ��(�:�*�� D�(�l(�-��� ?  0.83 
3 �1�**�**�	�(����, B��:0.� D(	�)��� ?  0.81 
4 �1�**�**�	�(����, m(2D�0k�� D�(�l(�-��� ?  0.8 
5 �1�**�**�	�(����, m(2P(2� ��	�)��� ?  0.94 
6 �1�**�**�	�(����, B�	�k	��k�� ���k���	��(�-��� ?  0.79 

7 
�1�**�**�	�(����, B�	�k	��k�� D�(�l(�-��� ?  0.84 
�1�**�**�	�(����, ��(�:�*�� ���k���	��(�-��� ?  0.83 

8 
�1�**�**�	�(����, m(2D�0k�� D�(�l(�-��� ?  0.89 �1�**�**�	�(����, ��(�:�*�� 

Table 15. Affective state prediction results. 
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The Ontology Learning Experiment 

As previously referred, one of the fields that already produces probabilistic 

ontologies is the field of ontology learning. In this experiment, we reason about 

taxonomies automatically learned from web search engines.  

Using the lexico-syntactic patterns defined by (Hearst 1992) (for more information 

about those patterns, see Section 3.3.1), we developed a simple system that receives 

the root of the taxonomy and uses a web search engine to infer its descendants until 

a pre-defined depth. The subsumption relations receive a confidence value using the 

following metric (McDowell and Cafarella 2008): 

�k�	��(, k� ? k�0���(, k�k�0���(� . 3.4 

Here, k�0���(, k� is the number of times that class ( appears subsumed by k, and 

k�0���(� is the total number of times that class ( appears subsumed by any class. This 

metric gives a value in the interval [0,1] and can be roughly interpreted as a 

probability (i.e., the probability of choosing the class k as the subsumer of (). Using 

the Yahoo Boss API (see Table 34 for more information about this API), we created a 

taxonomy with the class Animal as root, with a tree-depth of 3 levels. A graphical 

representation of an excerpt of this taxonomy, with the respective probabilities, is 

seen on Figure 13. This taxonomy is easily represented in OWL2 using the 

�0.�1�**
� relation. 

 
Figure 13. Automatically learned probabilistic taxonomy about animals. Directed edges represent the 

SubClassOf relation (e.g., SubClassOf(Lusitano,Horse)). 

Using this taxonomy and some sets of example individuals, we can use MC-SAT to 

query for the conditional probabilities of some classes. The most interesting results 

are in the next table. 

 

 

 

 

 

Animal

Rabbit HorseDog Lion

0.75 11 1

Cat

0.33

House Rabbit

1

Lusitano

10.33

Arthritis

0.5
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Set Number Assertions Queries and Results 

1 �1�**�**�	�(����, m0*(����� 
G�	*���� ?  0.9 
��(A�1��� ?  0.87 
G�0*�:�..(���� ?  0.17 

2 �1�**�**�	�(����, ���� 
<�-��� ?  0.24 
:�..(���� ?  0.29 
��(A�1��� ?  0.76 

3 �1�**�**�	�(����, G�0*�:�..(�� :�..(���� ?  0.81 
��(A�1��� ?  0.58 

Table 16. Most interesting reasoning results of Figure 13 taxonomy. 

Using the same approach, we can reason about other automatically extracted 

taxonomies (Figure 14, Figure 15, and Figure 16). Some example queries and their 

results can be seen on Table 17. 

 
Figure 14. Automatically learned probabilistic taxonomy about substances. Directed edges represent 

the SubClassOf relation. 

 
Figure 15. Automatically learned probabilistic taxonomy about cereals. Directed edges represent the 

SubClassOf relation. 

Substance

AlcoholAntioxidant Preservative Albumen Emollient

0.390.86 0.375 1 1

Ethanol Methanol

0.9 1

Vitamin C Vitamin E

1

1

Anthocyanins

0.33

Parabens Thimerosal

1
1

Acid

0.1

Casein

0.67

Acetone

1

Methyl Propyl Butyl Ethyl

0.8

1 1 1

Cereal

Wheat Barley Oat Rice Rye Lucky Charms

0.64 0.5
1

0.36 0.67 1

Spelt

0.67

Durum Wheat Corn

1 0.07

Oatmeal

0.31

Quick Oats

1

Arborio Thai Rice Parboiled riceBasmati rice

1

1

111
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Figure 16. Automatically learned probabilistic taxonomy about hydrocarbons. Directed edges 

represent the SubClassOf relation. 

 

Set 

Number 

Assertions Queries and Results 

1 �1�**�**�	�(����, �k������ 
B�����1��� ?  0.91 
�1k���1��� ?  0.81 
�0.*���k���� ?  0.58 

2 
�1�**�**�	�(����, 
��+��1� 
�1�**�**�	�(����, ��*A��(:(k�� 
�1�**�**�	�(����, �2�1�� 


����� ?  0.11 
��	��1��� ?  0.24 
:(k���� ?  0.95 
��	��1��� ?  0.33 
@������� ?  0.72 
��	��1��� ?  0.1 

3 
�1�**�**�	�(����, /����k�1�	�������� 
�1�**�**�	�(����, G����� 

B�������� ?  0.9 
G�)	���	.����� ?  0.48 

  G�)	���	.����� ?  0.86 
Table 17. Most interesting reasoning results of Figure 13, Figure 14, and Figure 15 taxonomies. 

3.2. Probabilistic Reasoning using Ontology 

Individuals 

In the last section, we adopted the principle that ontologies were somehow 

annotated with some kind of uncertainty information. However, these situations 

only occur in restricted domains, mainly those where these ontologies were built 

automatically by machines. In fact, it is studied (Tversky and Kahneman 1974) that 

humans are not good at either producing or perceiving concepts related to 

uncertainty, like probabilities. And even if humans were good at perceiving these 

types of concepts, creating and maintaining large uncertainty annotated ontologies 

can be a cumbersome and difficult task, invalidating all the gains that could arise 

from the annotation. These facts raise the importance of developing mechanisms to 

learn this uncertainty automatically. This can be useful not only to help users when 

creating uncertain ontologies, but also to gain access to the vast number of non-

uncertainty annotated ontologies already available. 

As noted in Section 2.5.3, in Markov logic, formulas’ weights can be learned 

generatively or discriminatively through example data. This example data usually is 

composed by individuals of the domain and their relations. In OWL2, individuals 

HydroCarbon

Ethane Methane PropaneBenzeneButane Alkane

0.6
0.750.83 0.540.670.67

Hexane

1

Terpene

1

Hexachloroethane
Pentachloroethan

e

0.75
1

Carbon 
Tetrachloride

Methylene 
Chloride

Trichloromethane

1
0.4

1

Deuterated 
Propane

1

Toluene

0.28
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correspond to the ABox of the ontology, and therefore they can be used to learn the 

formulas weights by interpreting them as ground atoms. 

Example 

Assume a simple ontology about birds (Table 18), with several example birds. Using 

Markov logic’s generative learning, we learned the weights present in Table 19. With 

that information, using MC-SAT, some probabilistic queries can be made (Table 20). 

 

Axiom �0.�1�**
���(	), �1�(�-��(A�1� 
�0.�1�**
��/��-0(�, ��A21�A���
���1�(�-��(A�1�� 
�0.�1�**
��/��-0(�, �(	)� 
�1�**�**�	�(���D(A, �(	)� 
�1�**�**�	�(���D�A, �(	)� 
�1�**�**�	�(���DE����, �(	)� 
�1�**�**�	�(���DE����, /��-0(�� 
�1�**�**�	�(���D(A, �1�(�-��(A�1� 
�1�**�**�	�(���D�A, �1�(�-��(A�1� 

Table 18. Flying Animals ontology, with several example birds. 

 

Axiom Weight 

�0.�1�**
���(	), �1�(�-��(A�1� 0.88 
�0.�1�**
��/��-0(�, ��A21�A���
���1�(�-��(A�1�� 1.45 
�0.�1�**
��/��-0(�, �(	)� 0 

Table 19. Learned weights for Table 18 ontology. 

 

Assertion Query and Result 

�1�**�**�	�(����, /��-0(�� 
�1�**�**�	�(����, �(	)� 

�1�(�-��(A�1��� ?  0.17 
�1�(�-��(A�1��� ?  0.7 

Table 20. Most interesting reasoning results of Table 18 ontology. 

3.2.1. Experimentation 

In this section, we explore several domains where individuals can be used to learn 

the uncertainty of the ontology: a financial ontology about a bank and its operations, 

a web based social network, and two machine learning datasets transformed into 

ontologies. 
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The Financial Experiment 

Evaluation Procedure and Data Set. Uncertainty reasoning is very important in 

discovering hidden knowledge in risk assessment domains. In this experiment, we 

use a financial ontology, GoldDLP30, to assess the risk of certain financial operations. 

In this ontology, there is information about a bank that offers services like loans and 

credit cards to private persons. The ontology contains 116 class and property axioms 

and 297 individuals, mainly distributed between accounts, clients, credit cards, and 

loans. One of the most interesting tasks in this domain is to determine if a given loan 

is a problematic loan. There is an OWL class responsible for that information, named 

ProblemLoan, and some axioms about that class (e.g., ProblemLoan is the 

complement of OkLoan). The main task in this experiment is to determine each 

loan’s probability of being a ProblemLoan. 

Experimental Results. Using generative learning and MC-SAT, we found that nine 

loans have a probability >90% of being a ProblemLoan. If we compare the results 

(Table 21) with a non-probabilistic reasoner, like Pellet31 (Sirin et al. 2007), these are 

the same nine individuals identified deterministically by it. However, our approach 

returns some more interesting results that were not identified by Pellet. All the other 

loans have a probability between 45-48% of being a ProblemLoan. This information is 

valuable because, roughly speaking, it demonstrates that any loan has an associated 

probability of being a problematic loan. This kind of results cannot be achieved using 

non-probabilistic reasoning, and therefore demonstrates the necessity of 

probabilistic reasoning to have a more profound understanding about the domain. 

However, if we use an existent Semantic Web probabilistic reasoner (e.g., Pronto32 

(Klinov 2008)), its results are the same of a non-probabilistic one, since the ontology 

does not contain any information about the uncertainty of its axioms. 

 

 

 

 

 

 

                                                      

 

 

 

 
30

 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm 

31
 http://pellet.owldl.com/ 

32
 http://pellet.owldl.com/pronto 
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Individual Probability Pellet 

loan5148 0.48 False 

loan5363 0.93 True 

loan5549 0.48 False 

loan5582 0.45 False 

loan5868 0.97 True 

loan6007 0.46 False 

loan6202 0.98 True 

loan6227 0.95 True 

loan6297 0.97 True 

loan6585 0.45 False 

loan6599 0.95 True 

loan6995 0.97 True 

loan7130 0.97 True 

loan7137  0.97 True 

loan7154 0.47 False 

loan7171 0.47 False 
Table 21. Financial experiment results comparison between the proposed approach (Property 

column) and a deterministic reasoner (Pellet). 

The Social Network Experiment 

One of the most used Semantic Web vocabularies is the Friend of a Friend33 (FOAF) 

vocabulary. This vocabulary allows describing social network data (i.e., persons and 

their relations) in OWL, with special incentive in linking users from different social 

networks. There are several web-based social networks that provide information 

about their users in FOAF (see Mindswap34 for a comprehensive list), and some 

projects are already exploiting that information (e.g., Google Social Graph API35). 

The objective of this experiment is to use Markov logic to explore the relational 

structure of FOAF networks. As data set, we choose Advogato36, a social network of 

free software developers. Advogato provides three interesting FOAF properties for 

our analysis: foaf:knows(x,y), meaning that user x knows user y; 

foaf:currentProject(x,y), meaning that user x is currently working in project y; and 

foaf:member(x,y), meaning that user x is member of the group y. After gathering and 

                                                      

 

 

 

 
33

 http://www.foaf-project.org/ 

34
 http://trust.mindswap.org 

35
 http://code.google.com/apis/socialgraph/ 

36
 http://advogato.org/ 
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processing all the available FOAF profiles, we had a total of 6688 individuals, 

representing 4198 users, 2487 projects, and 3 groups. Based on the Link Mining 

literature (Lise Getoor and Diehl 2005)(Lise Getoor 2003), we identified three 

interesting tasks to our experiment: link prediction, link-based classification, and 

link-based cluster analysis. 

Link Prediction 

Link prediction (Lise Getoor and Diehl 2005) is the problem of predicting the 

existence of a link between two objects based on the relations of the object with 

other objects. In our domain, we are particularly interested in predicting the 

acquaintance between users, i.e., the foaf:knows property. For this purpose, based 

on our common sense about the domain, we defined three simple rules to perform 

this task: 

 

Weight Formula 

0.09 $, �, & ' l��E*�, �� � l��E*��, &� � l��E*�, &� 
2.70 $, � ' l��E*�, �� # l��E*��, � 
1.11 $, �, & ' k0		���/	���k��, &� � k0		���/	���k���, &� � l��E*�, �� 

Table 22. Link prediction rules. 

The first two rules define knows as a transitive and symmetric property, 

respectively, while the last rule states that if two persons work on the same project, 

they probably know each other. Weights were learned generatively with all the 

individuals available. To better describe the results of the link prediction, we 

developed a simple artificial example composed by 9 users and 3 projects (Figure 

17). Next, using MC-SAT, we queried for the conditional probabilities of the 

foaf:knows property for all those users. Results can be seen on Table 23. 

 
Figure 17. Graphical representation of the artificial example. Users are represented by circles (A-I) and 

projects by squares (P1-P3). Black directed edges represent the foaf:knows relation, while gray 

undirected edges represent the foaf:currentProject relation. 
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Query Result 

knows(A,G) 0.90 

knows(A,F) 0.54 

knows(D,A) 0.94 

knows(C,A) 0.92 

knows(C,D) 0.98 

knows(H,F) 0.47 

Table 23. Most relevant results of the previous example. 

Some interesting results can be seen in this example: 

• knows(A,G) is greater than knows(A,F), even if both users are at the same 

distance from A. The only difference between them is that G works in the 

same project than A, getting a bigger probability; 

• knows(D,A), knows(C,A), and knows(C,D) have big probabilities, mostly 

because the symmetry of knows. However, the probability of knows(C,D) is 

the greatest, since both users also work in the same project, P3; 

• Since H and F does not share any direct connection, the probability of 

knows(H,F) is low, but not null. 

Link-based Classification 

The main task in link-based classification (Lise Getoor 2003) is to predict the category 

of an object based on the relations of that object with other objects. In our domain, 

there are three groups of users related to the experience of the user in the 

community: Apprentice, Journeyer, and Master. These groups are expressed through 

the foaf:member property. The objective of this experiment is to predict each user’s 

group based on their connections to other users. For this purpose, we defined 

another simple rule that uses the relationship between users expressed on the three 

rules of Table 22: 

 

Weight Formula 

0.19 $, �, & ' l��E*�, �� � A�A.�	�, &� � A�A.�	��, &� 

Table 24. Link-based classification rule. 

This rule states that the group of a user is influenced by the groups of the users 

that he knows. The weight of the rule was learned generatively in conjunction with 

the three rules of the previous experiment (their weights remained very similar). 

Next, we extracted a sub-network composed by 172 users (11 Apprentices, 55 

Journeyers, 93 Masters) and 54 projects and randomly removed the group 

information to 27% of the users (i.e., 47 users). With the rules of Table 22 and Table 

24 and the sub-network individuals, we used MC-SAT to predict the membership of 

the missing group users. The results, using metrics 3.5, 3.6, 3.7, and 3.8, can be seen 

in the next table. 
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�2�k(�(k(�� ? D	0� ,�-��(t�*D	0� ,�-��(t�* J ��1*� /�*(�(t�* 3.5 

/	�k(*(�� ? D	0� /�*(�(t�*D	0� /�*(�(t�* J ��1*� /�*(�(t�* 3.6 

:�k�11 ? D	0� /�*(�(t�*D	0� /�*(�(t�* J ��1*� ,�-��(t�* 3.7 

� w +��*0	� ? 2 X �/	�k(*(�� X :�k�11�/	�k(*(�� J :�k�11  3.8 

 

Group Specificity Precision Recall F-measure 

Apprentice (4) 0.98 0 0 0 

Journeyer (15) 0.97 0.83 0.33 0.48 

Master (28) 0.37 0.7 1 0.82 

Weighted Avg 0.61 0.68 0.70 0.64 

Table 25. Link-based classification results. Between brackets is the number of individuals of the group. 

Good results can be achieved on predicting user’s groups taking only in account 

the relational structure of the network. The bad results on predicting the Apprentice 

group are probably derived from the small number of elements of that group in the 

test network. The results could be probably improved if other non-relational 

information about users was provided (e.g., nationality, age, sex). 

Link-based cluster analysis 

In the last experiment, we had seen how to classify users in a set of predefined 

groups. However, in some cases, the information about groups is not available and 

we still need to segment the users. The goal of link-based cluster analysis (Lise 

Getoor 2003) is to cluster objects into groups that show similar relational 

characteristics. In our domain, it is interesting to cluster users given their 

acquaintances with other users. For this task, we can use the three rules presented 

in the link prediction task (Table 22), since they can gave us a relational matrix of the 

foaf:knows property for all the users (i.e., the probability of all the users know each 

other). Using the same sub-network of the last task (172 users and 54 projects), we 

used MC-SAT with the previously referred rules to predict the foaf:knows property 

for all the 172 users. With those results, we applied two distinct clustering 

techniques: the general purpose k-means clustering algorithm (Marques de Sá 2001), 
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and the Markov Cluster Algorithm37 (MCA) (Van Dongen 2000), an unsupervised 

graph clustering algorithm. 

After some initial experimentation, we defined the number of desired clusters in 

the k-means algorithm to 3, and the inflation property of the MCA to 1.6 (which also 

produces 3 clusters). Since the initialization of cluster centroids in k-means is 

random, the algorithm was run 100 times and the best solution is the one presented. 

Table 26 provides the cluster sizes and the number of shared members between 

solutions. 

 

 K-means 

K1 (114) K2 (47) K3 (11) 

MCA 

C1 (135) 102 22 11 

C2 (30) 5 25 0 

C3 (7) 7 0 0 

Table 26. Link-based clustering analysis results. The table represents the number of shared members 

between the clusters of the two algorithms (e.g., cluster C2 and K2 share 25 individuals). Between 

brackets is the size of each cluster. 

Even if the underlying techniques are conceptually distinct, both solutions provide 

similar clusters, both in size and composition. The biggest clusters from both 

solutions (C1 and K1) are very similar, as well the second biggest clusters (C2 and K2). 

The Non-Relational Experiment 

In the last experiments, we have seen how to classify and cluster relational domains. 

However, there are some domains that are “flat“ by nature, i.e., they do not provide 

any meaningful relation between objects of the same kind. In this experiment, we 

study two of these domains: the Mushrooms dataset and the Titanic dataset. 

Mushrooms Dataset 

Based on the mushrooms dataset38, we created a small ontology modelling the 

domain. The ontology is composed by 2 classes of mushrooms (Edible and Poisonous) 

and 6 properties (hasCapColor, hasHabitat, hasOdor, hasSporePrintColor, 

hasStalkColorAboveRing, and hasStalkSurfaceBelowRing). There are 8124 distinct 

mushrooms, and the task is to predict the class of the mushrooms given their 
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properties. We splited the data in two disjoint sets, each one with 4062 mushrooms, 

and rotated their usage on the training and test of these rules: 

 

Formula $ ' ! ���*
)�	�, �1A��)� � ��*
)�	�, ��(*� � ��*
)�	�, ,������ /�(*���0*�� 
$ ' ��*�2�	�/	(����1�	�, �	���� � /�(*���0*�� 
$ ' ��*
)�	�, ,���� � ��*���1l�0	��k���1�E:(�-�, �k�1��

� ! ��*���1l��1�	�.�t�:(�-�, �	�E�� � /�(*���0*�� 
$ '  ��*G�.(����, m��t�*� � ��*��2��1�	�, @�(��� � /�(*���0*�� 

Table 27. Mushrooms dataset  rules as provided in the dataset file. Rules for the Edible class are the 

negation of these four rules. Weights are not demonstrated since they vary with the training set. 

Weights were learned generatively, and MC-SAT inference was performed. The 

(averaged) results can be seen on the next table. 

 

Class Specificity Precision Recall F-measure 

Edible (4208) 0.99 0.98 0.90 0.94 

Poisonous (3916) 0.88 0.91 0.98 0.94 

Weighted Avg 0.94 0.94 0.94 0.94 

Table 28. Mushroom dataset classification results. Between brackets is the number of individuals in 

each class. 

Since the rules were made by experts in the domain, they gave good results in the 

classification process. 

Titanic Dataset 

The Titanic Dataset39 is composed by information about the passengers of the RMS 

Titanic ship that sunked in April 1912. There is information about the class (First, 

Second, Third, or Crew), age (Adult or Child), and sex of the passengers. The main 

task is to predict if a certain passenger survived to the accident given their 

properties. Using the dataset information, we created a simple ontology modelling 

the domain, with a total of 2201 passengers. Based on the famous women-and-

children-first protocol that became famous in the Titanic disaster, we created three 

simple rules (Table 29). 

 

                                                      

 

 

 

 
39

  http://stats.math.uni-augsburg.de/Mondrian/Data/Titanic.txt 



 

 

 
60 

 

 

Formula $ '  ��*���, ��A�1�� � �0	t(t�	�� $ '  ��*�-��, ��(1)� � �0	t(t�	�� $ ' (��1�**�, �(	*�� � �0	t(t�	�� 
Table 29. Titanic rules. Non-Survivor rules are the negation of these three. Weights are not 

demonstrated since they vary with the training set. 

The first two rules state that women and children could have more probability of 

being survivors, while the last rule states that passengers in first-class also could 

have more probabilities than the others of being saved. Using generative learning 

and MC-SAT, the data was split 50:50 in two disjoint sets, being the role of testing 

and training set swapped and the results averaged: 

 

Class Specificity Precision Recall F-measure 

Survivor (711) 0.81 0.61 0.60 0.61 

NonSurvivor (1490) 0.60 0.81 0.81 0.81 

Weighted Avg 0.67 0.75 0.75 0.75 

Table 30. Titanic dataset classification results. Between brackets is the number of individuals in each 

class. 

This results show that even with simple and easily comprehensible rules it is 

possible to achieve good classification results with Markov logic. 

3.3. Probabilistic Reasoning by Learning 

Individuals/Probabilities 

In the last section, we have explored the use of ontology individuals to automatically 

learn the uncertainty of the ontology axioms and perform inference with that 

information. This feature proved to be useful in domains where there was no 

information about that uncertainty, or in complex domains where this uncertainty is 

hard to infer, specially for humans. However, there are domains that are uncertain 

but do not have any type of information that could help us infer its uncertainty. 

These domains are not uncertainty annotated, and do not have a sufficient 

number of individuals that allows learning the weights with some confidence in the 

results. In fact, in most of the cases, these domains do not have any individuals at all. 

In a preliminary study (Table 31) with 216 ontologies from the TONES ontology 
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repository40, we found that approximately 75% of the ontologies do not have any 

type of individuals, and only about 7% had more individuals than formulas, fact that 

indicates a high probability of having a good number of individuals. 

 

Number of 

ontologies 

Number of ontologies 

with individuals 

Number of ontologies with more 

individuals than formulas 

216 54 (25%) 15 (7%) 
Table 31. Preliminary study on ontology individuals. 

This problem is mainly due to the fact that a large number of Semantic Web 

ontologies currently available were made to model pure terminological domains, 

with the main objective of answer questions about concepts and not individuals. In 

these ontologies, we have to find other ways of gathering information to learn the 

uncertainty of the axioms. In this thesis, we explored two approaches to tackle this 

problem: learn individuals and learn probabilities. 

3.3.1. Learning Individuals 

Due to the enormous quantity of textual resources currently avaliable, specially 

those present in the World Wide Web and avaliable through web search engines, 

extracting ontology individuals from those sources has became a task of growing 

interest. This is the task studied in the field of ontology population. 

Ontology Population 

The objective of ontology population techniques is to, given a source ontology and a 

corpus, extract  individuals of that ontology from the corpus, with their class and 

property assertions. There are two main types of methods to perform this task: 

supervised and semi-supervised methods (e.g., (Tanev and Magnini 2006)), using 

machine learning classifiers to learn individuals; and unsupervised methods, mainly 

using pre-defined lexico-syntactic patterns. In this thesis, we explored unsupervised 

methods, mainly due to its unsupervised and domain-free applicability. 

(Hearst 1992) defined 6 simple patterns to extract hyponymy relations from text. 

These patterns extract hyponyms by analisying expressions like “Animals such as 

dogs and cats“ and “Dogs, cats, and other animals“. As noted by several other works 

(e.g., (Evans and Street 2004) and (McDowell and Cafarella 2008)), these patterns 
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can be also used to extract class assertions, since an hyponymy relation can be also 

seen as an assertion that a certain class or individual is a member of (i.e., a hyponym) 

and is subsumed by other class. Several other works expanded those patterns, by 

improving them or by proposing new patterns (e.g., (Etzioni et al. 2005) and (P. 

Cimiano, Ladwig, and Staab 2005)). (McDowell and Cafarella 2008) also propose 

several metrics to evaluate the ontology population results, and to choose the best 

class for an individual. 

Proposed Approach 

After exploring the results of the previously presented works, we implemented the 

following ontology individual lexico-syntactic extraction patterns: 

 

Type Pattern 

Class Assertion 

CLASS {,} such as {NP,}* {(and|or)} NP 

such CLASS as {NP,}* {(and|or)} NP 

NP {,NP}* {,} (and|or) {(all|every)} other CLASS 

CLASS {,} (including|{e}specially) {NP,}* {(or|and)} NP 

CLASS like {NP,}* {(and|or)} NP 

NP (is|are) {(a|an|the)} CLASS 

Property Assertion 
NP (is|are) {(a|an|the)} RELATION NP 

NP {,} RELATION NP 

Table 32. Individual extraction patterns. CLASS and RELATION represent the class or relation that is to 

be populated, and NP represents a Noun Phrase. Optional elements are between braces, disjoint 

elements between parentheses, separated by a vertical bar. Asterisks indicate that optional elements 

can appear 0 or more times. 

For example, if we want to populate the class “Animal”, we look for expressions in 

the text like “Animals such as dogs, cats, and rabbits”, “Lions are animals”, “animals, 

specially chimpanzees and apes”. For properties, for example “son of”, we look for 

expressions like “Bob is the son of John” and “Bob, the son of John”. Noun Phrase 

detection is performed with the following patterns: 

 

Pattern 

NP = {DT} {CD} {AP} NOMINAL 

AP = {ADVERB} ADJECTIVE+ 

NOMINAL = NOUN+ 

Table 33. Noun phrase detection patterns. DT represents a determiner, CD a cardinal number, and AP 

an adjective phrase. Optional elements are between braces, and the plus indicates that the element 

must appear 1 or more times. 
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The ontology population procedure (Algorithm 1) was implemented in GATE41, a 

framework for natural language processing that already provides a tokenizer, 

sentence detector, part-of-speech tagger, and morphological analyzer. Patterns were 

implemented in JAPE, a finite state transducer engine for annotations based on 

regular expressions, available in GATE. 

 

Algorithm 1. Given an ontology O and a set of knowledge sources KS, the ontology 

population process is as follows: 

1. Build Corpus 

a. If KS contains files 

i. Add files to corpus 

b. If KS contains search engines 

i. Issue search engine queries using patterns of Table 32, using 

the classes and properties of O 

ii. Add results title and snippet to corpus 

2. Process Corpus 

a. Tokenization 

b. Sentence Splitting 

c. Part of Speech Tagging 

d. Morphological Analysis 

3. Parse Results 

a. Apply Table 32 patterns to the processed corpus 

b. Match the found assertions with the properties and classes of O 

c. Add correct assertions to O 

 

 

As knowledge sources, we can use electronic documents (e.g., Microsoft Word 

and Adobe PDF documents) or web search engines. We implemented the access to 

the three most used web search engines (Google, Yahoo, and Live Search). However, 

each of these web search engines provides distinct limitations (Table 34), which can 

influence the quality of the extracted individuals. Due to the maximum number of 
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queries restriction of Live Search, in this work we mainly use Google and Yahoo 

search engines capabilities. 

 

Web Search Engine Max. Number of 

Queries 

N. Results per query Registration 

Google Search API42 Unlimited* 64 (8 per time) Optional 

Yahoo BOSS43 Unlimited* 100 Mandatory 

Live Search API 2.044 7/second 1000 (50 per time) Mandatory 

Table 34. Web search engines APIS and their features. The unlimited number of queries of Google and 

Yahoo is theoretical.  

Example 

Suppose we want to populate a simple ontology about the characters of the 

animation television series Dragon Ball
45 and their fights (Figure 18). Using the 

extraction rules previously defined, and using the Google Search API as the 

knowledge source with 8 results per query, we found the assertions of Table 35. 

From the 11 Dragon Ball characters found, only one, “character” is wrong. This is 

due to the phrase “its characters are dragon ball characters”. Some of them, like Kid 

Chi and Tien are abbreviations of the full names (Kid Chi-Chi and Tien Shinhan, 

respectively). 

 

 
Figure 18. Dragon Ball ontology. Directed edge represents a property, rounded square a class. 
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Class/Property Assertion Count 

Dragon Ball Character 

goku 4 

piccolo 3 

frieza 2 

emperor pilaf 1 

character 1 

kid chi 1 

majin buu 1 

tien 1 

vegeta 1 

king piccolo 1 

chiaotzu 1 

fight 

(goku,piccolo) 1 

(piccolo,frieza) 1 

(goku,tien) 1 

(vegeta,frieza) 1 

Table 35. Dragon Ball ontology population individuals. 

Experimentation 

In this experiment, we automatically learn an ontology (Figure 19) about diseases 

and their symptoms and perform clustering on it.  

 
Figure 19. Diseases ontology. Directed edge represents a property, rounded squares classes. 

The first step is to learn the individuals of the class Disease using the class 

assertion patterns of Table 32. As corpus, we used both Google Search and Yahoo 

BOSS APIs with the maximum results possible per query (64 for Google, 100 for 

Yahoo). As we can see in Table 36, both search engines give similar precision results. 

Yahoo BOSS gives a bigger total number of individuals due to the bigger number of 

results per query. Precision results could be improved if we ignored the diseases that 

appeared only once in the corpus. However, their number is largely reduced (to 

about one third in both search engines). After joining all the correct diseases found 

by both search engines, and removing a small number of non-human diseases like 

powdery mildew, a total of 271 distinct diseases were found. 

 

Web Search Engine Individuals Total Correct Precision 

Yahoo BOSS 
All 330 231 0.70 

More than 1 count 117 92 0.79 

Google Search API 
All 193 128 0.66 

More than 1 count 67 51 0.76 
Table 36. Disease ontology class population results. 

Disease SymptomsymptomOf
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The next step is to learn the symptoms of those diseases. Using the property 

assertions patterns of Table 32, we queried both search engines with two textual 

variations of the symptomOf property: “symptom of” and “sign of”. Since we already 

know which diseases we want to find symptoms, the last part of the patterns can be 

easily substituted by the desired disease, i.e., we can query for “* is a symptom of 

Malaria” and “* is a sign of Malaria” instead of the more general queries “* is a 

symptom of *” and “* is a signal of *”. The results (Table 37) indicate similar 

precision values for both search engines.  

After joining all the correct symptom assertions produced by both search engines, 

and removing the diseases without symptoms, we had an ontology composed by 140 

diseases, 459 symptoms, and 671 symptoms assertions. One interesting fact is that 

there are individuals that are represented as both diseases and symptoms. For 

example, Bronchitis is defined as a disease, but also as a symptom for other diseases, 

like Lung Cancer. This fact occurs with 21 of the 140 diseases. 

 

Web Search Engine Individuals Total Correct Precision 

Yahoo BOSS 
All 618 389 0.63 

More than 1 count 228 144 0.63 

Google Search API 
All 661 419 0.63 

More than 1 count 187 133 0.71 
Table 37. SymptomOf ontology property population results. 

An interesting task to perform with this kind of ontology is to create clusters of 

similar diseases. For this purpose, we can use a set of similar rules to those used in 

the clustering experimentation of Section 3.2.1: 

 

Weight Formula 

0.21 $, �, & ' *�A2��A
��&, � � *�A2��A
��&, �� � �(A(1�	�, �� 

7.27 $, � ' �(A(1�	�, �� # �(A(1�	��, � 

0 $, �, & ' �(A(1�	�, �� � �(A(1�	��, &� � �(A(1�	�, &� 

Table 38. Diseases clustering rules. 

In this case, the first rule defines that two diseases are similar if they share 

symptoms. The other two rules define �(A(1�	 as a symmetric and transitive 

property, respectively. Weights were learned generatively using all the individuals 

available. We used MC-SAT with the previously referred rules to predict the �(A(1�	 

property for all the 140 diseases. With those results, we applied two partitional 
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clustering techniques (Zhao and Karypis 2005) available in the CLUTO46 toolkit: 

Repetead bisections (RB) and Nearest-Neighbor Graphs (NNG), both configured to 

create 5 clusters each: 

 

 RB 

K1 (84) K2 (15) K3 (24) K4 (8) K5 (9) 

NNG 

C1 (42) 42 0 0 0 0 

C2 (20) 7 13 0 0 0 

C3 (35) 3 0 23 0 9 

C4 (29) 20 0 1 8 0 

C5 (14) 12 2 0 0 0 

Table 39. Link-based clustering analysis results. The table represents the number of shared members 

between the clusters of the two algorithms (e.g., cluster C2 and K2 share 13 individuals). Between 

brackets is the size of each cluster. 

Both solutions created similar clusters, specially (C2, K2) and (C3, K3). Some of 

these clusters can be analyzed by their main symptoms. For example, all the diseases 

in cluster K5 have a common symptom: depression. This cluster includes diseases like 

migraines, anxiety, alzheimers, and bipolar disorder. Cluster K4 is composed by 

diseases related to the respiratory system, like lung cancer, tuberculosis, asthma, 

pneumonia, and diphteria. These diseases share symptoms like coughing, chest pain, 

and bronchodilation. In Cluster C5, most of the diseases, like cholera, salmonella, 

and colon cancer, share diarrhea as a common symptom. 

3.3.2. Learning Probabilities 

An OWL2 ontology is composed by a set of axioms that model the semantic relations 

between entities of the domain. In the last two sections, we have seen how to use 

individuals to learn automatically the uncertainty of those axioms. However, these 

approaches can have some problems: 

• We need a representative number of individuals to perform the learning 

process with some confidence in the results. This arise problems when: we do 

not have the desired number of individuals; or the final number of individuals 

is too large to perform weight learning efficiently. 

• Weights are hard for humans to understand, not only because they are not 

normalized, but also because in Markov logic they do not have a direct 
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correspondence to probabilities, and therefore their values can be 

misleading. 

An interesting approach would be to automatically learn the probability of 

axioms, instead of weights, and without the need for learning individuals. In this 

thesis, we explore the use of semantic similarity techniques to perform this task. 

Semantic Similarity 

Semantic similarity is the process of finding the similarity between two words or 

entities. This is usually done by studying the co-occurrence between those words or 

entities in a textual corpus: if they appear together many times, this could be the 

indication that they are somehow semantically related. The most used techniques 

use the redundancy and size of a huge corpus, like the World Wide Web, and the 

results of search engines to measure that similarity. This is usually done by counting 

the number of results returned by those search engines in specific queries related to 

the words or entities whose similarity we want to assert.  

In this thesis, we explored 6 distinct metrics to perform this task (Bollegala, 

Matsuo, and Ishizuka 2007) (Church and Hanks 1990) (Magnini et al. 2002) (Cilibrasi 

and Vitanyi 2004): 

@�.��kk�	)�/, �� ? G�/, ��G�/� J G��� w G�/, �� 3.9 

@�.
t�	1�2�/, �� ?  G�/, ��min �G�/�, G���� 3.10 

@�.<(k��/, �� ? 2G�/, ��G�/� J G��� 3.11 

/�(��E(*�+0�0�1����	A��(�� �/, �� ? logs � G�/, ��G�/�G��� X ,� 3.12 

��		�k��)���)(�(���1/	�.�.(1(�� �/, �� ?  G�/, ��
G�/�G���s�

X ,s� 3.13 

,�	A�1(&�)@�.<(*���k��/, �� ? max�log G�/� , log G���� w log G�/, ��log , w min �log G�/� , log G����  3.14 

 

Here  

• G�/� is the number of search engine results for search phrase / 

• G��� is the number of search engine results for search phrase � 

• G�/, �� is the number of search engine results for the tuple of search phrases /�   

• , is the total number of indexed pages by the search engine 

When search phrases / or � are composed by more than one word, they are 

enclosed by quotation marks. The index size of search engines,  ,,  is usually not 
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known, but it can be approximated by using sampling techniques (e.g. (Bar-Yossef 

and Gurevich 2008)). Based on the updated results provided by (de Kunder 2009), in 

this work we estimate the size of the Google index to 40 billion pages, and Yahoo to 

20 billion. 

WebJaccard, WebOverlap, and WebDice give a value in the interval [0,1], with 

higher values representing bigger similarities. Pointwise Mutual Information (PMI) 

and Corrected Conditional Probability (CCP) give a real positive number, with higher 

values also representing bigger similarities. The Normalized Web Distance (NWD) 

gives a positive real value, with the values closer to 0 representing the most 

similarity. However, some of these properties can change in some rare conditions 

(e.g., when search engines return more results in G�/, �� than in G�/� and/or G���). 

In these cases, if the result diverges from its range, we can clip the value to the 

closer value of the range (e.g., if PMI gives a result below 0, we can simply set it to 

0). 

Example 

To assert the semantic similarity between the words “dog” and “pet” using the 

Google Search API, we perform the following queries: 

 

Query Result Count 

dog 64,900,000 

pet 61,200,000 

dog pet 53,500,000 

Table 40. Google Search API query results count. 

The metrics results can be seen on Table 41, accompanied by other examples. 

 

Similarity WebJaccard WebOverlap WebDice PMI CCP NWD 

(dog,pet) 0.74 0.87 0.85 9.07 62.08 0.03 

(coimbra,portugal) 0.01 0.45 0.02 6.95 18.97 0.48 

(google,Pedro) 0.00 0.20 0.01 1.69 0.31 0.83 

(good,evil) 0.12 0.83 0.21 6.94 12.27 0.30 

(banana, einstein) 0.00 0.01 0.01 4.80 1.65 0.61 
Table 41. Examples of semantic similarity metrics results using the Google Search API. 

Proposed Approach 

The presented techniques assert the semantic similarity between any two entities by 

giving a confidence value to the likelihood that these entities have any type of 

semantic relation. However, in our specific case, we do not want to calculate if two 

entities are connected by any semantic relation: we already know they probably are, 

we just want to give a confidence value to that relation. For example, if we have the 

axiom �0.�1�**
��<�-, /���, we are not interested in asserting if the entity Dog has 

any type of semantic relation with Pet: we already know that they probably have one 
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(a subsumption relation). What we want is a confidence value to that specific 

relation between those two concrete entities. For this purpose, we can use the 

previously referred metrics with some modifications, namely in the format of the 

search engine queries. 

If we have a semantic relation defined by �/, :, ��, where  / is the subject, � the 

object, and : the relation, we redefine the previous query definitions as: 

• G�/� is the number of search engine results for search phrase "/: X " 

• G��� is the number of search engine results for the search phrase " X :�" 

• G�/, �� is the number of search engine results for the triple of search phrases "/:�"   

Here, X represents a web search engine wildcard that matches any potential 

word. Note that query phrases are obligatorily enclosed with quotation marks. 

Example 

If we have the axiom �0.�1�**
��<�-, /���, which can be translated to the semantic 

relation �<�-, (* �, /���, we perform the following queries using Google Search API: 

 

Query Result Count 

“dog is a *” 287,000 

“* is a pet” 182,000 

“dog is a pet” 785 

Table 42. Google Search API query results count. 

The metrics results, with some more examples, can be seen on the next table. 

 

Relation WebJaccard WebOverlap WebDice PMI CCP NWD 

(dog,is a,pet) 0.002 0.004 0.003 9.230 9.949 0.480 

(Obama,president 

of,United States) 
0.031 0.135 0.059 16.745 1,175.085 0.220 

(Einstein, 

eat,banana) 
0.000 0.000 0.000 0.000 0.000 +∞ 

(Coimbra,is 

in,Portugal) 
0.000 0.003 0.000 12.432 44.438 0.536 

(good,is,evil) 0.000 0.006 0.000 2.891 0.180 0.820 
Table 43. Examples of the modified semantic similarity metrics results using the Google Search API. 

As we can see, the first 3 metrics give results always near 0. This is mainly due to 

the fact that G�/, �� is constantly small compared to G�/� and G���, and since in 

these metrics  G�/, �� is divided by some form of combination between G�/� and G���, the resulting value is small. The other metrics take the size of the index, ,, 

into account, and, based on our common sense, give better results.  

Given those results, we have metrics that give values in the range [0,1], but in this 

case they always give values near 0. And we have metrics that work as intended, but 
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give a positive real value. However, we need that those metrics gave us a well 

distributed value between [0,1] that could be interpreted as our confidence on the 

veracity of the relation. To this purpose, we need to normalize those values. If we 

have a set of values ~t�,…,tT], a value t can be normalized into range [, �] by 

performing a linear scaling transformation: 

t� ?
t w A(�

A� w A(�
X u�� w � J v. 3.15 

Since we know that  ? 0, � ? 1, and A(� ? 0 in all of the metrics, this formula 

can be simplified into a simple division by A�: 

t� ?
t

A�
 3.16 

In the case of NWD, this value must be also converted into a dissimilarity: 

t�� ? 1 w t� 3.17 

If we apply the normalization to the previous results, we get the following values: 

 

Relation WebJaccard WebOverlap WebDice PMI CCP NWD 

(dog,is a,pet) 0.055 0.032 0.056 0.551 0.008 0.995 

(Obama,president 

of,United States) 
1.000 1.000 1.000 1.000 1.000 0.998 

(Einstein,eat,banana) 0.000 0.000 0.000 0.000 0.000 0.000 

(Coimbra,is in,Portugal) 0.002 0.021 0.002 0.742 0.038 0.995 

(good,is,evil) 0.003 0.042 0.004 0.173 0.000 0.992 
Table 44. Normalization of the metrics values in Table 43.  

In some cases, a semantic relation can have more than one query pattern. For 

example, the subClassOf relation can have all the patterns defined in Table 32, since 

these patterns where originally designed to infer subClassOf relations. In those cases, 

for one semantic relation, we have several values for each metric. The final metric 

value can be simply an arithmetic mean of those values, e.g., if /+��:� ? QtR, … , tTU, 

the new PMI is: 

/+����� ?
∑ t��

k�0��u@�./+��:�v
 3.18 

where k�0��u/+��:�v is the number of patterns used for semantic relation :. 

Experimentation 

In Section 3.1.2, we have extracted a taxonomy about animals from a web search 

engine, and used a simple metric based on the frequency of the extracted entities to 

assert the confidence value of the relations. In this experiment, we use the 

presented metrics to assert those confidence values. Using the patterns of Table 32, 

we issued the queries of Table 45 and used the Google Search API to calculate the 

various metric values. The results can be seen in Table 46. 
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Pattern ��!� ��"� ��!, "� 

1 “* such as P” “Q such as *” “Q such as P” 

2 “such * as P” “such Q as *” “such Q as P” 

3 “P (and OR or) (all OR 

every)? other *” 

“* (and OR or) (all OR 

every)? other Q” 

“P (and OR or) (all OR 

every)? other Q” 

4 “* (including OR 

specially OR especially) 

P” 

“Q (including OR 

specially OR especially) 

*” 

“Q (including OR 

specially OR especially) 

P” 

5 “* like P” “Q like *” “Q like P” 

6 “P (is OR are) (a OR an 

OR the)? *” 

“* (is OR are) (a OR an 

OR the)? Q” 

“P (is OR are) (a OR an 

OR the)? Q” 
Table 45. Search engine queries based on patterns from Table 32. ? indicates an optional pattern, 

indicating that two queries will be issued: one with that pattern, and one without. 

 

Relation Desired WebJaccard WebOverlap WebDice PMI CCP NWD 

rabbits, animals 1 0.27 0.81 0.28 0.96 0.53 0.99 

dogs, animals 1 1.00 1.00 1.00 0.98 0.82 1.00 

horses, animals 1 0.63 0.96 0.65 1.00 0.77 1.00 

lions, animals 1 0.16 0.60 0.17 0.94 0.55 0.99 

house rabbits, 

rabbits 
1 0.00 0.18 0.00 0.28 1.00 0.00 

cats, rabbits 0 0.01 0.21 0.01 0.48 0.02 0.66 

cats, dogs 0 0.11 0.09 0.11 0.62 0.09 0.83 

arthritis, dogs 0 0.00 0.00 0.00 0.19 0.00 0.33 

lusitano, horses 1 0.00 0.08 0.00 0.26 0.33 0.00 

Correlation 1 0.43 0.62 0.44 0.45 0.85 0.07 
Table 46. Modified semantic similarity metrics results based on query results from Table 45. 

CCP is the metric with best correlation. This result is mainly derived from the fact 

that it gives very low values to the wrong assertions (i.e., the ones with 0 as its 

desired value). The analysis of the results of the appliance of the individuals patterns 

(Table 47) demonstrate that there is no single pattern that is responsible for the high 

correlation of CCP: some patterns are good to measure specific assertions (e.g. 

pattern 4 and 6 to assertion (House Rabbits, Rabbits)), while others give average 

results in all the patterns (e.g. pattern 1). The combination of all the patterns is the 

key to the good results. 

The other metrics also give good results, especially WebOverlap. NWD contains a 

low correlation since it can only approximate the correct value of the four first 

assertions.  
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Relation Desired 1 2 3 4 5 6 

rabbits, animals 1 0.54 0.58 0.26 0.08 1.00 0.39 

dogs, animals 1 0.48 0.51 1.00 0.12 0.61 0.33 

horses, animals 1 0.46 0.26 0.97 0.14 0.62 1.00 

lions, animals 1 0.26 1.00 0.32 0.09 0.81 0.17 

house rabbits, rabbits 1 0.00 0.00 0.00 1.00 0.00 0.93 

cats, rabbits 0 0.00 0.00 0.05 0.00 0.06 0.05 

cats, dogs 0 0.00 0.00 0.21 0.00 0.07 0.11 

arthritis, dogs 0 0.00 0.00 0.00 0.00 0.00 0.00 

lusitano, horses 1 1.00 0.00 0.00 0.00 0.00 0.84 

Correlation 1 0.65 0.54 0.42 0.37 0.58 0.71 
Table 47. Results of the modified CCP metric, with separate patterns from Table 45. 

3.4. Final Remarks 

The main issue addressed in this chapter is: how can an OWL2 ontology be 

transformed into a MLN so we can use Markov logic capabilities? As seen, MLNs 

formulas can be acquired by interpreting ontology’s axioms as first-order logic 

formulas. For the MLN weights, several approaches were proposed: interpret 

ontology’s uncertainty annotations as weights; use ontology individuals to learn the 

weights; or learn probabilities and individuals of the ontology and use them to learn 

the weights. 

As seen, each of these approaches has its advantages and limitations, being 

appropriate for special situations. By analyzing them, two conclusions can be drawn. 

The first is that the more complex they are, the more probable it is that the quality of 

results declines. For example, if we have an ontology already with individuals, and 

we learn the weights using those individuals, the results are probably better than by 

learning the weights using individuals learned by a web search engine. This result 

leads to the second result, that the less information we have about the ontology, the 

worst will be the quality of the results. For example, having an ontology with both 

uncertainty annotations and individuals is better than have the same ontology only 

with individuals. Both facts must be taken in account when choosing any of the 

proposed approaches. 

In the next chapter, we present Incerto, the system that was used to perform all 

the experimentations in this chapter.    
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4. Incerto – A probabilistic Reasoner for the 

Semantic Web 

Using the ideas of the previous chapter, we developed Incerto, a probabilistic 

reasoner for the Semantic Web based on Markov logic. The system was developed in 

Java, and is freely available through a GNU Lesser General Public License47 (LGPL) at 

http://code.google.com/p/incerto. This section describes the features and 

functionalities, requirements, and architecture of the system. The organization of 

the code, some usage examples, and scalability tests are also provided. 

4.1. Features and Functionalities 

The main features and functionalities of the system are: 

• Load ontologies with or without uncertainty annotations. The system must 

read annotated ontologies (with weights or probabilities) and ontologies 

without annotations. 

• Selection of ontology axioms. The system must provide means to select 

subsets of the ontology to perform the reasoning. 

• Weight learning. The system must provide mechanism to learn the weights 

automatically. 

• Parameterization of algorithms. The system must allow the change of the 

parameters of the main algorithms. 

• Programmatic, command line, and visual access. The system must provide 

programmatic access, a command line interface, and a visual interface. 

4.2. Requirements 

In this section, we define the system’s requirements. These are divided in functional 

requirements, describing the system from the user’s perspective, and non-functional 

requirements, describing required properties and constraints of the system. 
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The functional requirements of the system are: 

• Probabilistic reasoning using Markov logic in OWL2 ontologies. Given a valid 

OWL2 ontology, the system must be able to perform probabilistic reasoning on 

it. 

• Intuitive result representation. The reasoning results must be presented in an 

intuitive and understandable way.  

The non-functional requirements, related to the usability, performance, and 

supportability of the system, are: 

• Simple access and installation. Novice users must be allowed to install and 

operate with the system with little or no training. However, the system must 

be also prepared to deal with the needs of more experienced users. 

• High performance. Since probabilistic reasoning is a very hard task in general, 

the system must be optimized to our specific domain. The parameters of 

performance definition of the system should be also visible to the user.  

• Easy modification and expansion. The system shall allow users to easily modify 

or expand the current system to their concrete needs. 

4.3. Architecture 

In this section, we present the system’s architecture (Figure 20) and describe its 

main components. There are two main components in the system: the System Core, 

responsible for the processes related to the reasoning, and the Interface Layer, 

responsible for the interaction with the user. 

Interface Layer

System Core

GUI

User

Ontology 

Processor

Markov Logic 

Engine

API CLI

Natural Language 

Processor
Aditional Libraries

 
Figure 20. System architecture. 
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4.3.1. System Core 

The System Core is the main component of the system. It interacts with four main 

external components: the Ontology Processor, responsible for the reading, 

processing, and writing of OWL2 ontologies; the Markov Logic Engine, responsible 

for the Markov logic reasoning and learning processes; the Natural Language 

Processor, responsible for the processing of natural language resources; and 

Additional Libraries, composed by a set of general libraries used in several minor 

tasks. Next, each of these components will be explained. 

Ontology Processor 

Ontology processing is provided by OWL API
48 (Horridge, S. Bechhofer, and Noppens 

2007), a Java open-source tool to process OWL ontologies. It provides a simple and 

easy Application Programming Interface (API) to deal with OWL ontologies, providing 

fast and efficient in-memory ontology processing. The main difference of OWL API to 

others ontology processors, like Jena
49, is that it uses a functional syntax 

representation, representing ontological knowledge as axioms instead of triples. This 

way, a much cleaner and easier to understand representation is achieved, providing 

a frame style modeling, easier to access programmatically. 

Markov Logic Engine 

Markov logic capabilities can be provided by two distinct packages: Alchemy and 

PyMLNs. 

Alchemy 

Alchemy50 (S. Kok et al. 2007) is a software package providing a series of algorithms 

for statistical relational learning and probabilistic logic inference, based on the 

Markov logic representation. It provides a series of state of the art algorithms for 

inference and learning in Markov logic (Table 48). 
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Feature Algorithms 

Weight Learning Generative and Discriminative (Voted Perceptron, 

Conjugate Gradient, and Newton's Method) 

Structure Learning Top-Down Learning 

Inference MAP/MPE inference and Probabilistic inference 

(MC-SAT, Gibbs Sampling, Simulated Tempering, 

and (lifted) Belief Propagation) 
Table 48. Alchemy features and algorithms. 

Other interesting features, like support of continuous domains and online 

inference are also supported. The application is developed in C++, being provided 

both an API and a console interface. Currently, it only supports natively Unix 

systems, but a porting to Windows systems with Cygwin
51 is possible. 

PyMLNs 

PyMLNs
52 is a Python toolkit to work with Markov logic networks. It provides a 

Python implementation of many algorithms for inference and learning in Markov 

logic: 

 

Feature Algorithms 

Weight Learning Maximum likelihood (Log-likelihood and Pseudo-

log-likelihood) 

Inference Probabilistic inference (Exact Inference, MC-SAT, 

and Gibbs Sampling) 
Table 49. PyMLNs features and algorithms. 

Some interesting features, like constraints on formulas probabilities and support 

for domains where the weights are in the [0,1] interval, are also provided. PyMLNs 

also provides a graphical user interface to work with Markov logic, using Alchemy or 

the intern engine as the Markov logic engine. 

Natural Language Processor 

Natural language processing is provided by the General Architecture for Text 

Engineering53 (GATE) (Cunningham et al. 2002). GATE provides a comprehensive Java 
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framework for human language processing. It is composed by several components 

and plugins that cover a large portion of the natural language processing tasks. In 

this work, we used the following components: 

• ANNIE, A Nearly-New Information Extraction system, which provides several 

components necessary to information extraction tasks, like tokenizers, 

sentence splitters, and a Part of Speech tagger; 

• JAPE, the Java Annotation Patterns Engine, a regular expression based 

language to parse annotations generated by other components (e.g. ANNIE). 

JAPE grammars are composed by a set of pattern/action rules that are 

applied to annotated documents; 

• GATE Morphological Analyzer identifies the lemma, i.e., the canonical form 

of a word, and affix of a token identified with a part of speech tag. 

Morphological analysis is performed using a set regular expression rules. 

Additional Libraries 

The System core also uses a set of additional libraries: 

• ANTLR
54, ANother Tool for Language Recognition, is a language tool that 

provides a Java framework for constructing recognizers, compilers, and 

translators from grammatical descriptions containing actions. In this work, it 

is used to parse the output files from the Markov logic engines; 

• JSON
55, the JavaScript Object Notation, is a lightweight data-interchange 

format. It provides a simple language based on lists and name/value pairs to 

exchange data. In this work, it is used to communicate with external web 

services, like those provided by web search engines. 

System Behavior 

The general function of the system is defined in Figure 21. In the Process Ontology 

process, a valid OWL2 ontology is transformed in an efficient computational 

representation using an Ontology Processor. In this phase, the ontology is also 

transformed in first-order logic. If the ontology does not contain uncertainty 
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annotations, or those uncertainty annotations are not weights, we have to learn 

those weights using the techniques of Sections 3.2 and 3.3. In the Reasoning process, 

the system has all the information needed for reasoning: a set of weighted formulas 

(i.e., a Markov logic network) and a query. Using a Markov Logic Engine, the 

reasoning results are returned to the interface layer. 

OWL2 

Ontology

Process Ontology
Ontology 

Processor

Uncertainty 

Annotations

Reasoning

Weight Learning

Markov Logic 

Engine

Reasoning 

Results

NO

YES

Query

Weights

YES

NO

 
Figure 21. Flow chart representing the behavior of the System Core. 

4.3.2. Interface Layer 

The interface layer is responsible for the interaction with the user. There are three 

ways of communicating with the system: 

• Application Programming Interface (API), providing a programmatic access to 

the system. This allows the incorporation of the system in other applications.   

• Graphical User Interface (GUI), providing a visual access to the system. This 

allows the system to be intuitively used by the user. 
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• Command-line Interface (CLI), providing a command-based access to the 

system. CLI capabilities are provided by JewelCLI56, an annotated interface 

based library to parse and present command line arguments. 

Due to the complexity of some operations, the API is the only interface that 

provides all the functionalities of the system. The other interfaces only provide the 

basic functionalities, sufficient for most of the tasks. 

4.4. Code Organization 

The code is organized using a well defined package hierarchy (Figure 22). The 

function of the main packages can be easily described: 

• Engines –Alchemy reasoning engines wrappers and utilities 

• Exceptions – Exceptions that can be generated by the system (e.g. 

MarkovLogicEngineException)  

• Experiments – Implementation of the experiments used in this thesis  

• FirstOrderLogic – Classes related to first-order logic (FOL) 

o Model – Classes representing FOL elements (e.g. Formula, Predicate, 

Variable) 

� Visitors – Visitor design pattern implementations for printing 

Model elements 

o Parser – Classes related to FOL file parsing 

• Interfaces – Implementations of the Interface Layer 

o API – API Interface Layer 

o CLI – CLI Interface Layer 

o GUI – GUI Interface Layer 

• Learners – Systems and utilities used to learn ontologies and their elements 

from textual resources (e.g., GateTaxonomyLearner, GateEvidenceLearner) 

o OntologyPopulation – Classes related to the learning of ontology 

individuals 

� Model – Classes representing elements used in the 

OntologyPopulation tasks (e.g., NounPhrase, TextualEntity) 

o Sources – Sources used by learners (e.g. DiskFiles, SearchEngine) 
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� SearchEngines 

engines (e.g. 

• Model – Classes representing general system entities (e.g. 

• Onto – Classes and utilities related to Ontology Processing

• Test – Examples of system applicatio

• Utils – General system utilities (e.g., 

o Settings – Utilities related to the read and parse of external settings 

files 

4.5. Usage Example

In this section, we provide a simple usage example of 

OWL2 ontology, ontology.owl

 

SearchEngines – Implementation of interfaces for web search 

engines (e.g. GoogleSearchAPI, YahooBossAPI) 

Classes representing general system entities (e.g. MLN

Classes and utilities related to Ontology Processing 

Examples of system applications 

General system utilities (e.g., InOutUtils, MathUtils, SystemUtils

Utilities related to the read and parse of external settings 

Figure 22. Code packages hierarchy. 

Usage Example 

In this section, we provide a simple usage example of Incerto. Suppose we have an 

ontology.owl, that contains various individuals. Our task is to use 
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those individuals to learn the uncertainty of the ontologies’ axioms, and query for 

the conditional probabilities of individuals belong to class Query. This task can be 

easily performed using any of the Incerto’s interfaces. 

API 

The API provides a simple access to the all the utilities developed in this thesis. For 

this usage example, seven lines of code were needed: 

 
1. MLN onto = new parserOWLAPI().onto2MLN("ontology.owl"); 

2. MarkovLogicEngine engine = IncertoSettings.getInstance().ML_ENGINE; 

3. Query q = Query.parseQuery("Query"); 

4. Evidence e = new Evidence(onto.getEvidences()); 

5. MLN mln = engine.weightlearning(onto,e); 

6. ReasoningResults res = engine.inference(mln, e, q); 

7. System.out.println(res); 

In the first two lines, the ontology is transformed in a MLN, and the reference for 

the default Markov logic engine is acquired. In lines 3 and 4, the desired query and 

the evidence individuals (in this case, all the individuals of the ontology) are created. 

In line 5, weight learning is performed, while in line 6 the learned MLN is used to 

perform inference. The results are printed in line 7. 

GUI 

The GUI provides the basic functionalities of Incerto. For this usage example, four 

steps were needed (Figure 23): 

1. Load the ontology 

2. Start the weight learning process 

3. Insert the value “Query” in the Query property 

4. Start the inference 

After performing these steps, inference results are shown in a new window. 

CLI 

The console interface is composed by several commands57: 

• <-s <string>> Source ontology location. 
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• [-l <string>] Ontology with individuals to learn the weights. If 

individuals of the source o

• [-i <string>] Ontology with individuals to be used in the inference process. If 

omitted, the individuals of the source o

• [-r <string>] Results file

console. 

• <-q <string>> Query predicates. They can be composed by the name of a class 

or property (e.g., 

about individuals (e.g., 

predicates can be added, separated by a s

Person;Person(Pedro);isFatherOf;isFatherOf(x,Pedro)

variables must be r

• [-e <string>] Extra first

• [--disablewl] Disable weight learning.

• [--mla] If set, instead of the probabilities, the most likely assignments t

query atoms are returned.

• [--help] Help. 

 

In this usage example, a
java –jar incerto.jar 

Figure 

 

Ontology with individuals to learn the weights. If 

individuals of the source ontology are used for this task. 

Ontology with individuals to be used in the inference process. If 

, the individuals of the source ontology are used for this task.

Results file location. If omitted, results are written to the 

Query predicates. They can be composed by the name of a class 

(e.g., Person;isFatherOf) with (optional) additional

about individuals (e.g., Person(Pedro);isFatherOf(x,Pedro)). Multiple query 

predicates can be added, separated by a semicolon (e.g., 

Person;Person(Pedro);isFatherOf;isFatherOf(x,Pedro) is a valid query). Free 

variables must be represented as lowercase digits. 

Extra first-order logic rules file location. 

Disable weight learning. 

instead of the probabilities, the most likely assignments t

query atoms are returned. 

a simple command was necessary: 
jar incerto.jar –s ontology.owl –q Query 

 

Figure 23. Graphical User Interface usage example. 
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4.6. Scalability Tests 

In this section, we study the scalability of Markov logic procedures in the Semantic 

Web domain, as implemented in Incerto. Our purpose is to measure the scalability of 

three distinct procedures: 

• Pre-processing, composed by the load and transformation of ontologies in 

MLNs; 

• Weight Learning, using the generative algorithm (see Section 2.5.3); 

• Inference, using the MC-SAT algorithm (see Section 2.5.2). 

For this purpose, those procedures were performed on seven distinct ontologies, 

each one with a varied number of individuals. This variation was made by randomly 

populating each ontology with a set of individuals (we tested with 1, 10, 100, 1.000, 

and 10.000 individuals), using these individuals to make an average of three 

assertions for each ontology class or property. The following ontologies were used: 

• Animals – Automatically learned ontology (Figure 13), composed by 9 classes 

and a simple taxonomic structure; 

• Substances – Automatically learned ontology (Figure 14), composed by 20 

classes and a more complex taxonomic structure; 

• Body Gestures – Simple ontology about body gestures (Table 14), with 13 

classes; 

• Diseases – Ontology about diseases and their symptoms (Figure 19). The 

ontology was augmented with the rules of Table 38, being composed by 

three classes and one property. 

• Social Network – Social network of Section 3.2.1, with three classes and 

three properties. Augmented with the rules of Table 22 and Table 24. 

• GoldDLP – Financial ontology used in Section 3.2.1, with 39 classes and 6 

properties. 

• Wine – Ontology about wines58, composed by 43 classes and 13 properties. 

The averaged results (5 runs for each experiment), using an Intel Centrino Duo 

T2300 with 1536 MB of memory and the Alchemy engine, can be seen on Figure 24, 

Figure 25, and Figure 26. Some interesting results were found: 

• Pre-processing takes a relatively small time comparing to the weight learning 

and inference procedures, especially when the number of individuals is high. 
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The Wine ontology took more time in this procedure, mainly because it 

contains more complex axioms, making its interpretation to first-order logic 

more difficult; 

• Animals, Substances, and Body Gestures ontologies take less than six seconds 

to perform weight learning with 10.000 individuals. However, Diseases, Social 

Network, and GoldDLP ontologies took around half an hour with 1.000 

individuals, and exceeded the predefined maximum time (three hours) with 

10.000 individuals. The Wine ontology only processed 10 individuals in the 

maximum time; 

• Inference is the most exigent procedure with all the ontologies. In the first 

three ontologies, inference was made with the maximum individuals in the 

predefined time. With the Diseases, Social Network, and GoldDLP ontologies, 

inference was only possible with 100 individuals. With more individuals, the 

available memory was exhausted. The Wine ontology only processed 10 

individuals in the maximum time.  

The bad inference results in the last four ontologies are mainly due to the fact 

that the Wine ontology contains cardinality restrictions, while the other three have 

transitivity properties. Both cardinality restrictions and transitivity generate first-

order formulas with more than two free variables (see Appendix I). Since in Markov 

logic all the possible combinations between these free variables with the individuals 

of the domain must be grounded, the number of groundings increases exponentially 

with the number of free variables. This fact raises the complexity of reasoning, both 

in terms of time and used memory.  

In the weight learning, the bad results are also derived from the same problem, 

because even if inference is not made (only discriminative learning uses inference), 

the number of groundings for each formula must be counted, and the more complex 

are the formulas, more intensive is the counting. 

 
Figure 24. Pre-Processing scalability results. Time is in logarithmic scale. 
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Figure 25. Markov logic weight learning scalability results. Time is in logarithmic scale. 

 
Figure 26. Markov logic inference scalability results. Time is in logarithmic scale. 
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5. Conclusions 

To realize the Semantic Web vision of a world where knowledge is the most 

important element, mechanisms must be developed to represent and reason about 

the uncertainty that this knowledge could arise. In this thesis, we explored the use of 

Markov logic, a unifying representation of logic and probability, to learn and reason 

about uncertainty in the Semantic Web. The main contributions of this thesis are: 

• Through Markov logic, we applied the ideas of a new field, statistical 

relational learning, which has been developing mechanisms to learn and 

reason in large uncertain relational domains. These characteristics are the 

same of the Semantic Web; 

• Unlike other approaches, we studied not only reasoning about uncertainty in 

the Semantic Web, but also how we can learn that uncertainty from various 

sources, like ontology individuals, textual corpus, and web search engines; 

• Unlike other approaches that also use probabilistic graphical models, our 

approach is based on Markov networks, which are undirected probabilistic 

models that allow cyclic knowledge; 

• We developed a new method to transform probabilities in Markov logic 

weights. This method is more efficient than other approaches, and has no 

restrictions on his application; 

• We developed a new method to learn the probabilities of OWL2 axioms using 

a web search engine. This method uses semantic similarity techniques, and 

can be applied in several domains where there is no other information about 

the uncertainty of the ontology;  

• Our system, Incerto, can be used in many crucial domains for the Semantic 

Web, like ontology learning, social networks analysis, and ontology individual 

clustering. 

In fact, since Markov logic is a so broad approach, we think that our approach of 

using Markov logic learning and reasoning capabilities in the Semantic Web can be 

seen as an introductory step in providing a general Markov logic framework for the 

Semantic Web (Pedro Domingos, Lowd, et al. 2008), providing services like ontology 

learning, reasoning, mapping, refining, among others. 

However, currently, Markov logic contains some problems that interfere with its 

use in many Semantic Web domains. The high complexity on reasoning with 

transitivity and cardinality restrictions largely restricts its appliance in many 

ontologies. The lack of the definition of uncertainty information about evidential 

knowledge (i.e., we can only define the uncertainty of relations between classes and 

properties, and not about individuals belonging to a certain class or property) also 

reduces its usability in several domains, like ontology population and learning. To 

realize the vision of Markov logic as a general framework for the Semantic Web, 

these problems must be solved. 
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This thesis comprised several deliverables, concluded at different stages of the 

project. At the end of the project, the following milestones were delivered: 

• Bibliographic Revision, describing the most relevant concepts to this thesis 

(Chapter 2); 

• Technologies and Tools Study, describing the tools and technologies that 

could be used in this thesis (see Section 4.3); 

• Thesis Proposal Elaboration, describing the proposed approach and the 

architecture of the system; 

• First System Prototype, a simple version of the system, composed mainly by 

the System Core (see Section 4.3.1); 

• Second System Prototype, the final version of the system, with all the features 

described in Chapter 4; 

• Final Thesis Elaboration, describing all the work done in this thesis. 

The work plan defined for this thesis, with tasks and respective schedule, is 

represented in Figure 27. Some deliverables suffered some delays compared to the 

schedule, but they were completely finished. 

5.1. Future Work 

In this section, we identify some directions for future work. Some of these directions 

have the objective of improving the executed work, while others explore some new 

interesting ideas and concepts that aroused during this work. 

5.1.1. General Ideas 

In general, there are several issues that deserve further exploration. The most 

obvious is the appliance of the presented techniques in more domains. We have 

applied our approaches in several relevant domains for the Semantic Web, like 

reasoning about automatically learned ontologies (Section 3.1.2) and web-based 

social networks (Section 3.2.1). More domains and tasks, like mapping and aligning 

ontologies (Euzenat and Shvaiko 2007), and automatically learning and augmenting 

ontologies (e.g., (Philipp Cimiano 2006), (Maedche 2002), (Suchanek, Sozio, and 

Weikum 2009)) could largely benefit from Markov logic capabilities. 

In this thesis, we explored several ways to automatically learn the uncertainty of 

ontology axioms. However, more ideas could be explored: 

• Other ways of learning individuals. We explored the use of textual resources 

to learn ontology individuals. Other way of populating ontologies is through 

the analysis of structured data, like relational databases or other ontologies. 

In this case, mappings (Euzenat and Shvaiko 2007) must be made between 

the structured data objects and the entities of the ontology. 
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• Learn the uncertainties directly from textual corpus. This is done by analyzing 

textual resources for patterns like “70% of A is B” or “Most of the A’s are B’s”. 

This can be done by using previously trained classifiers or general lexico-

syntactic rules. 

• Use the structure of the ontology. The structure of the ontology can provide 

interesting information about the uncertainty of its axioms. Some other 

works (Gomes 2004) (Stuckenschmidt and Klein 2004) (Ramakrishnan et al. 

2005) already explored similar approaches in ontologies, however with 

distinct objectives than ours. The field of network analysis (Brandes and 

Erlebach 2005) can provide us with some interesting concepts that can be 

potentially transferred to our specific case. 

• Collective learning of weights. The idea is to learn the weights collectively 

from multiple ontologies about the same domain. This task can be achieved 

by exploring techniques from collective learning fields, like relational 

reinforcement learning (Tadepalli, Givan, and Driessens 2004). 

• Trust propagation. The idea is to use the propagation of trust metrics in 

groups to automatically learn the uncertainty of certain axioms. This idea was 

already applied in the Markov logic context (M. Richardson 2004). 

As seen in Section 0, there are some OWL2 properties, like transitivity and 

cardinality restrictions, which make reasoning in Markov logic very difficult in most 

of the domains. Some recent works (P. Singla and P. Domingos 2008) (Jain and Beetz 

2008) are already exploring new techniques to cope with this kind of problems, and 

we plan to apply them in the future.  

5.1.2. Probabilistic Reasoning in Uncertainty-annotated 

Ontologies 

One of the properties of the proposed approach to interpret probabilities as weights 

in Markov logic that needs further study is the influence of the number of individuals 

used in the learning process. During our experimentation, we found that in certain 

domains the number of individuals used in the learning process largely influences the 

learned weights. These weights, sometimes, did not reflect the desired probabilities, 

giving very polarized probabilities during inference. It is studied (Jain, Kirchlechner, 

and Beetz 2007) that the number of individuals can influence the learned weights in 

Markov logic, and we plan to study this situation in more depth in the future. We 

also plan to study the difficulties of convergence of the discriminative learning 

algorithm in some domains, fact that influences the quality of the learned weights. 
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5.1.3. Probabilistic Reasoning by Learning 

Individuals/Probabilities 

Learn Individuals 

Several improvements can be made to the ontology population process. Improving 

the linguistic processing of the corpus, for example by adding support to others 

languages besides English and adding stemmers to help lemmatizers, are some of 

these improvements. Other tasks related to the mapping of the learned individuals 

to the classes and individuals already existent in the source ontologies, like 

coreference resolution (P. Singla and P. Domingos 2006b) (Culotta, Wick, Hall, and 

McCallum 2007), word-sense disambiguation (Navigli 2009), and canonicalization 

(Culotta, Wick, Hall, Marzilli, et al. 2007), could also improve the quality of the 

results. One interesting idea, as proposed by (Suchanek, Sozio, and Weikum 2009), is 

to use the ontology structure and the already available individuals to guide the 

learning process. Other improvements, like learning new lexico-syntactic patterns 

and develop specific extractors to parse lists (Etzioni et al. 2005), could also improve 

the number of extracted individuals. 

Learn Probabilities 

In this thesis, we explored 6 semantic similarity metrics to learn axioms probabilities 

using web search engines. In the future, more metrics (e.g., (Lin 1998) (Bollegala, 

Matsuo, and Ishizuka 2007)) could be also explored. More complex ways of 

normalizing metrics results, like the ones that use Naïve Bayes Classifiers (Etzioni et 

al. 2005), even if more complex, usually give better results, and could be an issue for 

further exploration. 

5.1.4. System 

One of the most interesting future tasks is to develop a domain-specific Java Markov 

logic reasoning engine that could be easily incorporated in the existing system. This 

engine would be optimized and specifically developed for the Semantic Web domain, 

providing only the algorithms that perform well and are needed in this domain. This 

engine would also solve one of the major bottlenecks of the system, which is the 

need to communicate with external processes, since the available Markov logic 

engines were not developed in Java. 
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Figure 27. Project planning. 
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Appendix I 

OWL2 interpretation as first-order logic. 


