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ABSTRACT 
Most of the approaches for dealing with uncertainty in the 

Semantic Web rely on the principle that this uncertainty is already 

asserted. In this paper, we propose a new approach to learn and 

reason about uncertainty in the Semantic Web. Using instance 

data, we learn the uncertainty of an OWL ontology, and use that 

information to perform probabilistic reasoning on it. For this 

purpose, we use Markov logic, a new representation formalism 

that combines logic with probabilistic graphical models. 

Categories and Subject Descriptors 

I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving – 

uncertainty, “fuzzy”, and probabilistic reasoning. 

General Terms 

Algorithms, Experimentation. 
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1. INTRODUCTION 
The Semantic Web [1] envisions a world where agents share and 

transfer structured knowledge in an open and semi-automatic way. 

This knowledge, in most of the cases, is characterized by 

uncertainty. However, Semantic Web languages like RDF and 

OWL don’t provide any means of dealing with this uncertainty. 

They are mainly based on crisp logic, being incapacitated of 

dealing with partial and incomplete knowledge. Reasoning in the 

Semantic Web resigns to a deterministic process of verifying if 

statements are true or false.  

In the last years, some efforts have been made in representing and 

reasoning with uncertainty in the Semantic Web (see [2] for a 

complete overview about the subject). These works mainly 

focused on extending the logics behind Semantic Web languages 

to the probabilistic/possibilistic/fuzzy logics, or on combining 

these languages with probabilistic formalisms like Bayesian 

Networks. In all of these approaches, this is achieved by 

annotating the ontologies with some kind of uncertainty 

information about its axioms and use this information to perform 

uncertainty reasoning. However, a question arises: how are these 

uncertainties asserted?  

The most obvious answer is that users are responsible for this 

task. However, this assumption is fairly fallible. It is studied that 

humans are not good at either producing or perceiving concepts 

like probability [3]. And even if humans were capable of doing 

that, creating and maintaining large annotated ontologies can be a 

cumbersome and difficult task, invalidating all the gains that 

could arise from the annotation. 

In fact, uncertainty is a common characteristic of the current Web. 

When we create a webpage, for example, search engines are 

responsible to assert what is the probabilistic relevance of it, 

compared to other pages, to certain topics. We don’t have to 

explicitly refer that information: we just create its content, and 

search engines do the rest. So, we must develop similar automatic 

mechanisms to perform reasoning in the Semantic Web. 

In this work, we study how we can make probabilistic reasoning 

on OWL ontologies without any kind of uncertainty annotation. 

To assert the uncertainty of its axioms, we use solely the 

information of its instances. For this purpose, we use Markov 

logic [4], a novel approach that combines logic and probability in 

the same representation. 

2. MARKOV LOGIC 
Markov logic combines first-order logic and probabilistic 

graphical models, namely Markov networks, in a unifying 

representation. The main idea behind Markov logic is that, unlike 

first-order logic, a world that violates a formula is not invalid, but 

only less probable. This is done by attaching weights to first-order 

logic formulas: the higher the weight, the bigger is the difference 

between a world that satisfies the formula and one that does not, 

other things been equal. These weighted formulas represent a 

Markov logic network. 

A Markov logic network (MLN) [4] L  is a set of pairs ),w(F ii ,  

where iF  is a formula in first-order logic and iw  is a real value 

representing the weight of the formula. If a set of constants 
},...,{ 1 nccC  is provided, we can construct a Markov network 

CLM , , called a ground Markov network, as follows: 

 A binary node is created for each possible grounding of each 

atom in L , being its value 1 if the ground atom is true, 0 

otherwise. 

 Each possible grounding of each formula iF  in L  will 

generate a distinct feature, being its value 1 if the ground 

formula is true, 0 otherwise. The weight of the feature is the 

iw  associated with the formula. 

This way, it is created a node for each ground atom and an edge if 

two ground atoms appear in the same formula. Suppose we have a 

simple MLN with two formulas. 

Table 1. Markov logic network example 

Formula Weight 

)(Pr)( xisonxStealx  3 

)(Pr)(),( yisonxStealyxersCrimePartnyx  1.5 
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Using the previous algorithm, if we have two constants, Anna and 

Bob, the resulting ground Markov network will have eight 

variables, corresponding to eight grounded atoms. 

Steal(Bob) Steal(Anna)

Prison(Bob)

Prison(Anna)

CrimeParterns
(Bob, Anna)

CrimeParterns
(Bob, Bob)

CrimeParterns
(Anna, Bob)

CrimeParterns
(Anna, Anna)

1 if CrimePartners(Bob,Anna) ^ Steal(Bob) => Prison(Anna)
0 otherwise

w=1.5

 
Figure 1. Ground Markov network built from the previous 

Markov logic network with one example feature. 

We can define the probability distribution of a ground Markov 

Network as: 

))(exp(
1
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1

F
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Z
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In this formula, F is the number of formulas in the MLN, )(xni is 

the number of true groundings of iF  in the world x , iw  is the 

weight of iF , and Z  is a normalizing constant obtained by 

summing the formula to all the possible worlds. 

This probability distribution can be used to answer probabilistic 

queries about the world. In this work, we are interested in finding 

marginal and conditional probabilities of some events. However, 

this task can be intractable in very large domains, so these 

probabilities are usually obtained by approximation methods, 

mainly those based on sampling-based techniques like Markov 

Chain Monte Carlo (MCMC) [4]. 

3. FROM OWL TO MLN 
For the purpose of this work, we will use OWL-DL, a Web 

Ontology language proposed by the W3C. This language is based 

on the very expressive description logic SHOIN(D). Like other 

description logics, SHOIN(D) provides a model-theoretic 

semantics [5]. This means that descriptions can be identified with 

formulas in first-order logic. The main idea behind this 

identification is that concepts correspond to unary predicates, 

roles to binary predicates, and individuals correspond to constants.  

So, given an OWL-DL ontology, we can interpret its semantics as 

a set of first-order formulas. Now we need to find the weights to 

those formulas. One way of learning those weights is through 

example data, by generatively maximizing the pseudo-likelihood 

of that data [4] (i.e., approximate the distribution of the features 

given the example data). In this work, we will use instances as 

example data to learn those weights. 

4. EXPERIMENT 
As experimentation of our approach, we choose GoldDLP1, an 

ontology describing a financial domain. In this ontology, there is 
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information about a bank that offers services like loans and credit 

cards to private persons. One of the most interesting tasks in this 

domain is to determine if a given loan is a problematic loan. There 

is an OWL class responsible for that information, named 

ProblemLoan, and some simple rules about that class (for 

example, ProblemLoan is the complement of OkLoan). So, the 

main task in this experiment is to use Markov logic to determine 

each loan’s probability of being a ProblemLoan. For this purpose, 

we translated the OWL ontology to first-order logic and divided 

the formulas in two sets: one corresponding to the intensional 

knowledge (i.e., the structure) of the ontology, which will be the 

base of our MLN, and another corresponding to the extensional 

knowledge (i.e., the instances), which will be our evidence data. 

Next, we used Alchemy2 to generatively learn the weights of our 

base MLN using the evidence data. Using MCMC, we queried for 

the probability of an individual being a ProblemLoan. 

Nine loans have a probability >90% of being a ProblemLoan. If 

we compare the results with a non-probabilistic reasoner, like 

Pellet 3 , these are the same nine instances identified 

deterministically by it. However, our approach returns some more 

interesting results that were not identified by Pellet. All the other 

loans have a probability between 35-39% of being a 

ProblemLoan. This information is valuable because, roughly 

speaking, it demonstrates that any loan has an associated 

probability of being a problematic loan. This kind of results 

cannot be achieved using non-probabilistic reasoning, and 

therefore demonstrates the necessity of probabilistic reasoning to 

have a more profound understanding about the domain. 

5. CONCLUSION AND FUTURE WORK 
In this work we used Markov logic to learn and reason about 

uncertainty in OWL-DL ontologies. Our preliminary 

experimentation shows interesting results, and we will continue to 

explore this approach by experimenting with more ontologies. 

Since there are many ontologies with no instances, we are also 

studying techniques to learn evidence data from textual corpus 

about the domain of the ontology, and use it to learn the weights. 

We are also exploring the possibility of learn the weights 

collectively from multiple ontologies about the same domain. 
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